Adaptive Radio Technologies, LLC

The Firehose Adaptive Radio

Michael Caffrey, President April, 2010

Michael Caffrey 505-412-9980 mpc@adaptiveradiotech.com

:

Joseph Palmer jmp@adaptiveradiotech.com

Keith Morgan ksm@adaptiveradiotech.com Slide: 1

AdaptiveRadioTech.Com

Firehose: Overview

- Adaptive software defined radio system
 - Designed to maximize Bits/Joule
 - 33 dB adaptability (20+ data rates)
- Simple to use
- 10 Mbps peak downlink rate
- 4 dB of coding gain (LDPC FEC)
- Full Duplex
- 1/2 W Tx power

Firehose: How it works

Firehose: Benefits

<u>Advantages</u>

- CubeSat compatible
- up to 10x more data and
- 10x greater efficiency
- •Greater reliability
- •Upgrade after launch
- Improved tolerance against interference

Example Scenario #1

One day of 6 contacts from 560km, 35° circular orbit Nadir pointing spacecraft (6 dB patch) Los Alamos NM Ground station (<u>2.4m</u> tracking dish)

Example Scenario #2

AdaptiveRadioTech.Com

Same day of 6 contacts Nadir pointing spacecraft (6 dB patch) Los Alamos, NM Ground station (<u>.6m</u> tracking dish)

Adaptive Radio

Total data: 367 Mb/day Average data rate: 84 kbps

vs. Conventional

Total data: 26 Mb/day Average data rate: 6 kbps

Ratio: 13.94

Estimate Performance Yourself

Download link calculator

http://AdaptiveRadioTech.com/calculator

Requires Matlab, Satellite Tool Kit (AGI, Inc)

- 1.Generate an access report from STK
- 2.Enter antenna specifics in linkObj.m
- 3.Explore

4. Please give us feedback (info@AdaptiveRadioTech.com)

Radio Architecture

- Simple binary interface
- Discrete flags & power control
- Control & Status
 - I2C default
- High speed downlink
 - SPI default
- Low speed priority downlink
 - I2C default
- 3.3V data interface

AdaptiveRadioTech.Com

Satellite Interfaces

- Data Interface Options
 - SPI, I2C, RS422/485 UART, serial LVDS, RS232 UART
- Power < 6W peak
 - 3.3V, peak 1.1 A
 - 5V , peak .48 A
- Mechanical
 - CSK/PC104 footprint
 - <165g
- RF : Frequencies can be customized to user requirements
 - 900 MHz 9.6 kbps uplink
 - 2.4 GHz 10 Mbps downlink
 - 50 Ohm SMA antenna interfaces (two)
- Downlink: 30 MHz spectrum
- Uplink: 30 KHz spectrum

Satellite Radio State of Health

Voltage

- 1.2V, 3.3V, 5.0V
- Current
 - 3.3V & 5.0V
- Temperature
 - Processor
 - Power Amplifier
 - PCB
- RF power
 - Forward & reverse TX power
- Status
 - Current data rate
 - FIFO status
 - Receive signal strength indicator

Ground Station

: - :----

The Firehose modem integrates into the typical ground station IF chain (either 70 or 140 MHz) and communicates with your PC via USB

AdaptiveRadioTech.Com

Future Developments

- •Summer 2010
 - Environmental testing
 - •Field trials
 - Packaging GS modem
 - •Software interface
- •Delivery Fall 2010 (can be accelerated)

- Encryption
- Multiple Access capability
 Multiple CubeSats in formation
 Automatic Repeat Request (ARQ)
 - Incorporates onboard flash
- •Higher peak data rates
- Complete compact mobile
- ground terminals
 - •USB connected
 - •Tracking .6m Rx dish
 - •Tracking Tx helical

Conclusion: Maximize the Data Rate

- 1. Use a Firehose radio system
- 2. Locate the ground station at a latitude = orbit inclination
- 3. Control satellite attitude (antenna pointing) to align boresight
- 4. More gain
- 5. More power

<u>Firehose</u>

- 10x data & energy efficiency
- Greater reliability by providing substantial link margin
- Performs well in the presence of interference
- 'Upgrade' after launch
- A clear path to multiple access

Comparisons

- Adaptive systems in wide use
 - IEEE 802.11
 - Adaptive Coding & Modulation
 - WiMax
- Not optimized for maximum bits/Joule
- Not available for CubeSat application
- Do not have the necessary adaptability (30+ dB)
- Variable systems
 - Require development of complex control software at user level
 - May drop data during rate changes
 - Require synchronization of the ground station and satellite rate changes
 - Do not have sufficient range of supported data rates
 - May be problematic in the event of surprises (interference or attitude anomaly)

