Spangelo et al.

Motivation FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

Federated Ground Station Network Capacity Assessment

Sara Spangelo¹ James Cutler²

¹Ph.D. Candidate Department of Aerospace Engineering University of Michigan

²Assistant Professor Department of Aerospace Engineering University of Michigan

Spring 2010 CubeSat Conference San Luis Obispo, California

March 2010

Motivation

Spangelo et al.

Motivation FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

Existing communication systems designed for single missions

and highly constrained.

- •Many small satellites communicate only to one or a handful of dedicated ground stations.
- •Existing ground stations are monolithic in design and largely underutilized.

Growing number of satellite developers planning science missions face ground station infrastructure limitations

Satellites are unable to maintain 24/7 coverage with current ground station:
Systems are complex, non-standardized, and have reliability issues.

Federated Ground Station Networks (FGSNs)

FGSN: Synergy of autonomous, globally distributed ground stations¹ *Internet-enabled communication system where ground stations are independently owned + loosely cooperative*

Motivation FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

Spangelo et al.

¹J. Cutler, P. Linder, and A. Fox, "A Federated Ground Station Network," in SpaceOps Conference Proceedings, October 2002.

Federated Ground Station Networks (FGSNs)

•Communication opportunity, dynamic, flexible framework

FGSN Advantages:

Spangelo et al.

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work Science Missions: constellations capture data to avoid space and time aliasing (more than just glimpses of micro- and macro-physics)¹
Studying the sun, heliosphere, magnetosphere, ionosphere, mesosphere, atmosphere, and climate change.²

Potential beneficiaries:

•QB50, NPSCuL, MMC Projects

•NASA, Industry, DoD, Air Force Networks

- •National Science Foundation (NSF)
- •International CubeSat Community

(Michigan, CalPoly, etc)

Image Credit: NSF Government News Website

¹H. Spence and T. Moore. A retrospective look forward on constellation-class geospace missions. FallAGU Meeting, December 2009 ²T. Jorgensen. The nsf cubesat program: The promise of scientic projects. Fall AGU Meeting,December 2009.

Contributions

Spangelo et al.

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

- Analytical model as a function of ground station and satellite constraints and mission requirements
- Assess network capacity and identify trends of existing and future networks by numeric simulation

Larger Goal:

Develop robust, real-time optimization algorithms for multi-satellite missions and FGSNs

Network Capacity Model

Capacity: Amount of information exchanged across the network

Spangelo et al.

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

 $C_N = \sum_{j=1}^{m} C_j(t) \quad m = \# Ground Stations$ n = # SatellitesCapacity of Network: $C_{j} = \sum_{i=1}^{n} \int_{0}^{T} a_{ij}(t) r_{ij}(t) l_{ij}(t) \eta_{ij}(t) dt$ Capacity of Ground Station j: Rate of data exchange a: Availability r:Data rate *l: Link feasibility* η: Efficiency T: Period

Network Capacity Model

Ground Station Constraints:

Spangelo et al.

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work Antenna size Scheduling conflicts Pointing/ slewing capabilities

Satellite Constraints:

Antenna Size

Transmit/ Receive

On-board energy

storage

Network Image Credit: NEC Microwave Tube, Ltd. Satellite Image Credit: Falling Pixel Website

Network Capacity Model Levels

Ellipse Area: Network Capacity, decreases with increasing model fidelity

8

Capacity Assessment: Tools

Tools

ullet

۲

•

Spangelo et al.

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

- Satellite Tool Kit (STK)® and Matlab®
- Two line elements (TLEs) for CubeSats from <u>www.spacetrack.org</u>
- STK/SGP4 Propagator for orbit maneuver and trajectory analysis
- Models ideal P-POD deployment (ΔV , plunger)
- Computes separation, contact times

Capacity Assessment: Example Satellites and Ground Stations

CUBESAT

•Low cost, standardized access to space

•Miniaturized satellite (nanosatellite)

•Each Cube (1U): 10cm cube, 1 kg

CubeSats

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

Radio Aurora Explorer (RAX)

Ground Stations

CubeSat Ground Station Community

Air Force Satellite Control Network (AFSCN)

Images Credit: CalPoly Website, University of Michigan CubeSat Survey, US Air Force Portal Website

Example launcher: Poly Picosatellite Orbital Deployer (P-POD) standard interface between CubeSat and Launch Vehicle

Average Daily Access Time

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

Spangelo et al.

Percentage coverage of Ground Stations

Spangelo et al.

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

Percentage of satellite orbits the satellite will be in view of a ground station with minimum elevation 0°.

3 Ground Stations in Air Force Satellite Control Network (AFSCN) to a AeroCube-2 satellite in P-POD TacSat3 launch

Effect of Ground Station Latitude

Spangelo et al.

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

Simulation of Satellite at 40° Inclination using STK SPG4 Propagator

6 Ground Stations3 Satellites

Nac

Ground Station	Latitude Category	
AFSCN	Multiple	
AeroCube3, C Hawksat Sate (TacSat3 Launch)	P6, ellites	
i- 40.5°		
e _{avg} = 0. 003		
n = 15.4 rev/de	ay	
a = 6.83km		
This a fit and		:
Time after Ej	poch	
43 days		

Capacity Assessment 3 Satellites AeroCube3, CP6, HawkAat **Orbital Parameters** Clustered Satellite P-POD Launch i- 40.5° $e_{ava} = 0.003$ Spangelo et al. $a = 6.83 \cdot 10^3 km$ Separation of Satellite Pairs Individual and Total Network Capacity X Motivation Aerocube3 Introduction CP6 HawkSat1 700 Total **FGSN** Contributions Capacity (sec/ day) 000 000 000 000 000 Network Model Capacity Assessment Conclusion Future Work 3000 2000 25 30 50 55 10 15 20 35 Days from Epoch (19 May 2009)

3 satellites from P-POD TacSat3 launch vehicle from Minotaur I Ann Arbor Ground Station (Latitude: 42.27 N, Longitude: 83.74 W)

1 Ground Station

15 Ground Stations3 Satellites

Ground Station Network to 3 CubeSats $\begin{array}{c} AeroCube3, CP6, HawkAat \\ Orbital Parameters\\ i \cdot 40.5^{\circ} \\ e_{avg} = 0.003 \\ a = 6.83 \cdot 10^{3} km \end{array}$

Spangelo et al.

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

Full Air Force Satellite Control Network to 3 Satellites in P-POD from TacSat3 launch vehicle from Minotaur I

Future Work & Applications

Future Work:

Spangelo et al.

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work CubeSat Survey to identify spacecraft needs

Increase satellite and network model fidelity

Develop real-time scheduling tools

International Ground Station Network

Dynamic optimization techniques for mission design & tactical scheduling

Future Applications:

CubeSat Developers (104 users, 98 GSs, 291 antenna systems) Naval Postgraduate School (NPS) NPSCuL to deploy 50 1U CubeSats QB50 Project : 50 CubeSats science mission (*in-situ* and re-entry research)

Acknowledgments

Spangelo et al.

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

- ✓ Small Satellite Research Group
- ✓ Radio Aurora eXplorer (RAX) Team
- ✓ Professor McKague & CubeSat Community
- ✓ National Science and Engineering Research Council of Canada (NSERC)
- ✓ University of Michigan Aerospace Engineering Department

Spangelo et al.

Motivation Introduction FGSN Contributions Network Model Capacity Assessment Conclusion Future Work

NASA's First Deep-Space Internet

Photo Credit: NASA JPL Website