SSDLCAM

Stanford's Space and Systems Development Laboratory

Professor: Andrew Kalman

Presenters: Joe Johnson, Giovanni Minelli, Ashish Goel

Cubesats and Cameras?

Cubesats historically have had very limited imaging capabilities

- Low processing power
- Inaccurate pointing
- Power consumption constraints
- · Limited data downlink

- Poor support for interconnectivity
- High-end cameras don't fare well in space

SSDLCAM

1.5U Payload

•Primary payload consists of high-resolution imager paired with high-end processing

- Integrates with stand-alone bus from industry partner (with attitude control)
- Part of Cubeview mission with launch in Q2/Q3 2010

Applications

- Vegetation / algae bloom monitoring
- Oil spill tracking
- Forest fire detection
- Pollution monitoring
- Land mass characterization

System Architecture

- Lippert Cool Spacerunner
 LX800
 - PC/104 SBC (fits 1U dims)
 - 500 MHz AMD Geode
 - 256 MB RAM, 2 GB SSD
 - Linux Debian 5 OS
- TCP/IP communications
- USB 2.0/RS232 support
 - Modular and expandable
 - 2.5 W allotment/peripheral
- LPT used for device control/fault management

Lippert LX800

Payload Interface Board

System Architecture

System Architecture

Imaging Hardware

- Pumpkin camera
- Kodak color interline CCD
- 11 MP resolution
- USB 2.0 interface
- 12 V external power
- 520g

Imaging Software

- Open Source Software
 - Linux 2.6 (x86)
 - Open source driver
 - OpenCV
 - GraphicsMagick
- Advantages
 - Abstraction
 - Leverage existing tools
 - Rapid development
 - Ease of development

System Applications instead of System Firmware

Imaging Data Flow

Flash Memory Reliability Experiment

- Aim
 - Characterize susceptibility of flash memory in space environment
 - Number of SEUs and burnouts
 - As a function of time
 - As a function of position in the orbit
- Hardware
 - 4 Atmel 64Mb serial Flash memory chips
 - 2 shielded and 2 unshielded
 - Modeled in SPENVIS
 - Mounted on nadir surface cover plate
 - Shielded MSP430 microcontroller
 - USB 2.0 interface

Energetic Electron Detector

- Lightning \rightarrow Whistler waves (VLF)
- Whistler waves \rightarrow Precipitating electrons
- Precursor to a dedicated future mission
- Hardware
 - Analog front-end board
 - Avalanche photodiode
 - Pre-amplifier
 - FPGA-based signal processing
 - Digital pulse shaping
 - Pulse height measurement
 - Energy histogram
 - High voltage power supply

Additional Science Payloads

- Possible additional payloads
 - VHF signals from micrometeoroid impacts
 - Space qualification of UV-LEDs and Photodiodes
 - Possible use for charge mitigation on LISA

How do they all fit together in 1.5U?

Conclusions

- We're able to put a camera on a Cubesat
- Open architecture simplifies programming and compatibility with other standards
- Plug-and-play environment with multiple experiments allows for rapid development

Questions?

