C S MIAC www.cosmiac.org

Cal Poly Workshop April 2010 Craig Kief and Steve Suddarth

CONFIGURABLE SPACE MICROSYSTEMS INNOVATIONS & APPLICATIONS CENTER

What is CubeFlow

- Under sponsorship by the Operationally Responsive Space (ORS) office, the Air Force Research Laboratory (AFRL) developed a modular nanosatellite approach where hardware and software "black-box" elements can be combined very quickly (possibly less than an hour) to form simple, but functional spacecraft.
- They are fully compliant with the Stanford/CalPoly CubeSat and Poly-Picosatellite Orbital Dispenser (PPOD) standards, but extend these standards by permitting interchangeability of components.
- As such, distributed groups can create individual component parts that can be brought together and quickly assembled using plug-andplay (PnP) mechanisms, similar to those in personal computers.

What are the CubeFlow parts?

- XTEDS eXtended Transducer Electronic
 Datasheets. This is the datasheet for all hardware modules. A food processor has a datasheet, for SPA, the datasheet is an XTEDS.
- ASIM Applique Sensor Interface Module. This holds the XTEDS. For SPA-U, this is usually modeled after an AT90USB device
- SDM Satellite Data Module. This is the Linux OS that runs the CDH of the satellite and communicates with the ASIMs

Current status on ASIMs

- There are a wide variety of different ASIM platforms. Here are some examples:
 - Soft Core processor on FPGA (could go to SIRF)
 - Small Low Power ASIC (first silicon 2010)
 - Rad Hard version
 - Training versions based on AT90USB device

SPA

- SPA = Space Plug-and-Play Avionics
 - SPA-S = Spacewire
 - SPA-S(LV) = low voltage (5V) spacewire
 - SPA-U = similar to USB
 - SPA-1 = similar to I2C

Temp sensors, Electrical Power switches, Magnetic torquer control, Active heat control, house keeping, solar arrays, batteries, etc

Spa -1

- ÅAC Microtec has developed first SPA-1 radiation tolerant device, "nanoRTU 200".
- Compatible with Nano Modular Format (NMF, ¼ facet)
- TID: 20 krad, SEE immune (TMR, EDAC, Parity)
- Power consumption < 50 mW
- Support In-Circuit firmware & xTEDS update
- SPA-1 library developed by USU/SDL

Extended version only

COSMIAC FPGA and SDR

 COSMIAC is taking an existing SPA-3A FPGA board and modifying it from it's configuration for image processing into a SPA Software Defined Radio Platform

Project is modeled after USRP platform

Lego Power

Solar Pack <= Solar Cells + SAR

n Battery + m Solar Packs = PMAD (1W – 100W)

Swedish QuadSat-PnP 1 spacecraft details

- Built by ÅAC Microtec, Uppsala, Sweden
- "SPAready" (SPA-U / SPA-1), hardware also prepared for SPA-10, SPA-S
- Modular and scalable
- 4U Formfactor , 25 x 25 x 20 cm
- ~15 W continous power
- Weight ~ 15 kg
- Sun Sychronous Orbit, 98.2° inclination
- Orbit height, ~ 700 km
- Orbit time, T ~ 99 min
- Sun pointing stabilized (1 x reaction wheels and magnetorquers)
- Intersatellite, S-band, and VHF data downlink
- Launch target, 2H 2011 on Indian PSLV

BoreCleaner

- AFRL is building a series of CubeSats called BoreCleaner
- Launches have become more affordable so AFRL is just planning on buying three of them for 3U launches for SPA assets
- What AFRL is desperate for is not folks that can build entire satellites, but that can build single modules (sensor, power, comms) that are SPA compatible
 BC
 Spare Parts

ReSpace 2010 Conference Overview

- What commercial electronics components can be effectively used in space systems NOW?
- What does this do to our subsystems can I make better cameras, IMUs, etc in a small package?
- How does this change missions?

Albuquerque, New Mexico

Come by the COSMIAC booth for the Call for Papers

Dates: 1-4 November 2010

Sponsorship and Exhibitor Opportunities

ReSpace 2010 Conference

•Creative concepts of operation, cost reduction made possible through the use of modern electronics in small spacecraft

- •Extending managed space systems capability by introducing reconfigurable electronics
- Doing more with less -- new breed of compact subsystems
- Modularity and Plug-and-Play -- Who's best?
- •Responsiveness "X" on demand (meeting an unexpected requirement quickly)
- •State of Modularity for Space PnP: concepts, components, software, tools, etc.
- Current Applications of Modularity APT, responsive space and current PnP-based launch pipeline activities.
- •Revolution after next Reconfigurable matter, Electro-optical computing, ...
- •Outer limits Using small spacecraft to perform big missions. How far can "small sat" ideas be used to integrate into big concepts, and big spacecraft?

We are looking for papers – CFP has been extended until 1 May 2010

For more information, google: ReSpace 2010 conference