Simulating Realistic Launch Conditions by Performing Shake Test Under Sustained G-load

> KENNETH MALLORY TA LIN JIN KANG

DREXEL UNIVERSITY

- Introduction
- Combined G-load shake test
- Benefits of combined-load test
- Test setup
- Preliminary results
- Conclusion

Introduction - Lab

3

- Drexel Space Systems Lab
 - Part of Mechanical Engineering and Mechanics Dept.
 - Developing first satellite 1U CubeSat
 - Has 24 undergraduate students working on CubeSat project

jinkang@drexel.edu

4/28/2010

jinkang@drexel.edu

- Shake test is done to simulate launch loads so that satellites will survive launch environment
- Idea is to better simulate launch environment
 - Vibration load applied to satellite
 - Sustained g-load applied to satellite in z-axis due to rocket acceleration
- Simulate both at same time → shake test inside centrifuge accelerator
 - ATFS-400[™] "Phoenix" Sustained G Centrifuge Motion Platform

- Limitations of current shake test
 - Does not account for sustained-acceleration
 - Must test to much higher level for safety margin
 - Cannot simulate simultaneous two-axes loading
 - × E.g.) vibration in y-axis, combined with sustained g-load in z-axis
- Expected benefits of combined g-load test
 - Better simulate launch environment such that more realistic load characteristic of satellite can be analyzed
 - May lead to reduction in required margin → less strain on satellite

Preliminary Results

• Initial testing to Demonstrated NASA GEVS Qualification profile at G loads of up to 9G

Data result obtained from NASTAR

Preliminary Results

- Test setup with mock payload (small mass) has been successfully tested
 - Obtained preliminary data as shown
 - Confirmed feasibility of combined loading test
- Actual flight hardware vibration testing will be performed on similar setup
 - Further testing delayed due to technical difficulties
 - Obtained data be compared to traditional vibration test
 - Will perform multiple axes vibration relative to acceleration
 - DragonSat-1 to be tested with NASA GEVS profile

Conclusion

- Combined g-load testing can have benefits
 - Better simulation of realistic conditions
 - Can lead to reduction in required shake level
- CubeSat platform ideal for collection of data and implementation of new test method
 - o Hard to fit larger shaker table inside gondola → small shake payload
- Actual space hardware/satellite will be tested
 - Detailed test result will be available soon
 - Can potentially catalyze new test paradigm