

Integrated CubeSat Test Facility for Precision Pointing and Power Generation

Steve Wassom, Quinn Young, Lynn Chidester, Rees Fullmer, Mitch Whiteley, Robert Burt, Mike Watson, Bryan Bingham, Keegan Ryan

> 7th Annual CubeSat Developers' Workshop Cal Poly San Luis Obispo 21-23 April 2010

Introduction

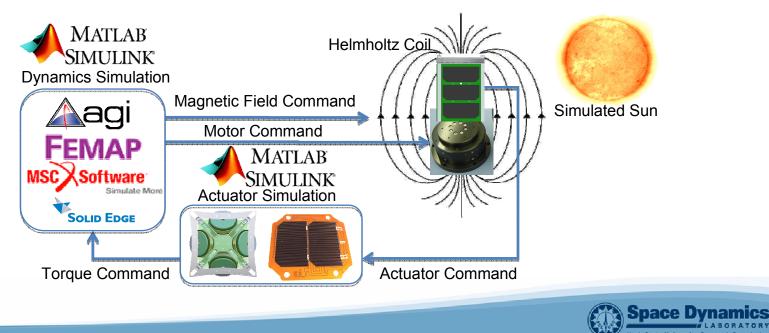
- Motivation
 - Requirements-based missions need pre-mission verification
 - Current industrial verification base is for larger spacecraft
 - CubeSats need novel approaches due to small disturbance torques

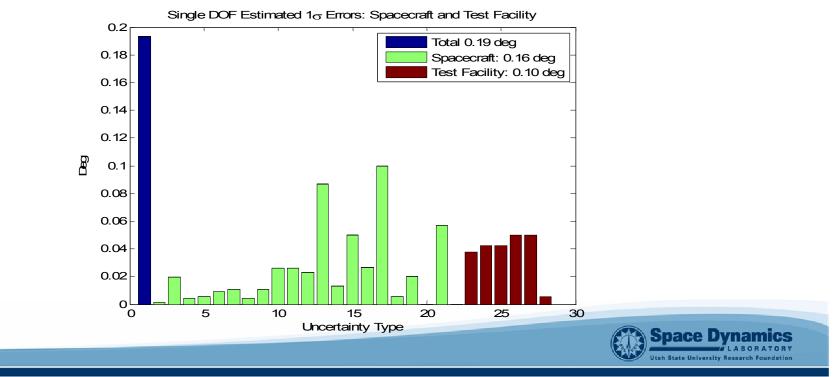
Goal

- Provide verification capability to enable requirements-based missions
- Make test facility available to community
- Implementation
 - Class 1 and Class 2 spacecraft up to 10 kg (see table below)
 - Upgrades to follow as required

Class	Descriptive Feature	Typical Knowledge Accuracy	Typical Control Accuracy
1	Spinning	1°	5°
2	Sun/Mag	0.2°	0.2°
3	Star Tracker	0.01°	0.02°

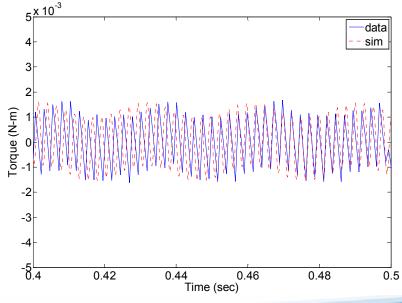
Overview


- Internally funded project
- Phase 1 complete August 2010
- Focus for Phase 1
 - Class 1 and Class 2 spacecraft
 - Verification of attitude control components
 - Verification of mass properties
 - End-to-end verification of power subsystem
 - End-to-end verification of attitude control subsystem
 - End-to-end system test


System Level Testing

- End-to-end system testing and verification
- Capability
 - Flat-sat (real-time-model-based) avionics and flight software verification
 - End-to-end attitude control verification
 - Assembled spacecraft independent operation and verification

System Level Attitude Control Verification


- Single-axis testing uses air bearing and encoder
- Three-axis testing uses real-time simulation and hardware-inthe-loop
- Predicted accuracy < 0.2°</p>
- Class 3 upgrades will include Stewart platform, star simulator



Reaction Wheel Testing

Purpose

- Characterization of reaction wheels or similar components
- Capability
 - High-precision measurement of wheel speed
 - Analytical (model-based) and empirical determination of torque
 - Characterization of jitter

pace D

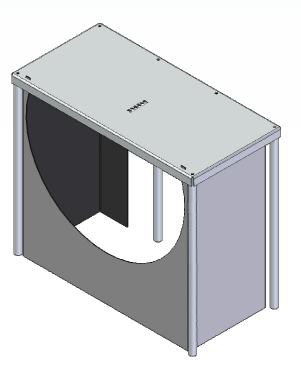
Magnetometer / Torquer Coil Testing

▶ Purpose

- Characterization and/or calibration of magnetic field sensors and actuators
- Capability
 - Three-axis Helmholtz cage
 - Closed loop control of magnetic field
 - Dual differential magnetometers
 - Two-meter cage, 60-cm nominal working volume
 - Moveable coils provide choice of smaller highly-uniform field or larger less-uniform field
 - Zero-gauss chamber for calibration

Helmholtz cage under construction

Sun Sensor Testing


- Calibration and characterization of sun sensors
- Capability
 - Sun source
 - Two-axis precision gimbal
 - ≤0.002°repeatability
 - ≤ 0.01°accuracy

Horizon Sensor Testing

- Calibrate and characterize horizon sensors
- Capability
 - Earth simulator (variable temperature)
 - Space simulator (liquid nitrogen cooled)
 - Rotary mount to simulate terminator crossing

Solar Panel Testing

Purpose

Test solar panel assemblies and/or power control system

Capability

- Continuous AM0 light source
- Meets Class BBA (IEC 60904-9)
 - B: Spectral Concurrence to the sun (0.6 to 1.4)
 - B: Irradiation non-uniformity ($\leq 5\%$)
 - A: Temporal Stability (≤ 2%)
- Target Area 300 x 300 mm
- NIST-traceable pyranometer measures intensity

Mass Properties Testing

- Measure mass, center of mass, and moments of inertia
- Capability
 - Center of mass (CM) table
 - Three-point kinematic mount with load cells
 - Static and dynamic balancing
 - Moment of inertia (MOI) table
 - Innovative design restricts translational motion
 - Leverages SDL experience with special pivots
 - Optically measure period of oscillation

Summary

SDL's CubeSat test facility will provide requirements verification

- Ensure requirements are met prior to launch
- Enable testing and verification of individual components as well as system
- Upgrade to higher capabilities as need arises
- Resource to help our government, industry, and academic partners transition from current CubeSat capabilities to the next generation

