

<u>Geoff Crowley</u>, Chad Fish, Charles Swenson, Gary Bust, Aroh Barjatya, Miguel Larsen, and USU Student Team

DYNAMIC IONOSPHERE CUBESAT EXPERIMENT

NSF-Funded Dual-satellite Space Weather Mission Project Funded October 2009 (6 months ago)

PRELIMINARY DESIGN REVIEW: JAN 25, 2010

•11 Students & 5 professionals •Review Panel (7 SDL Staff)

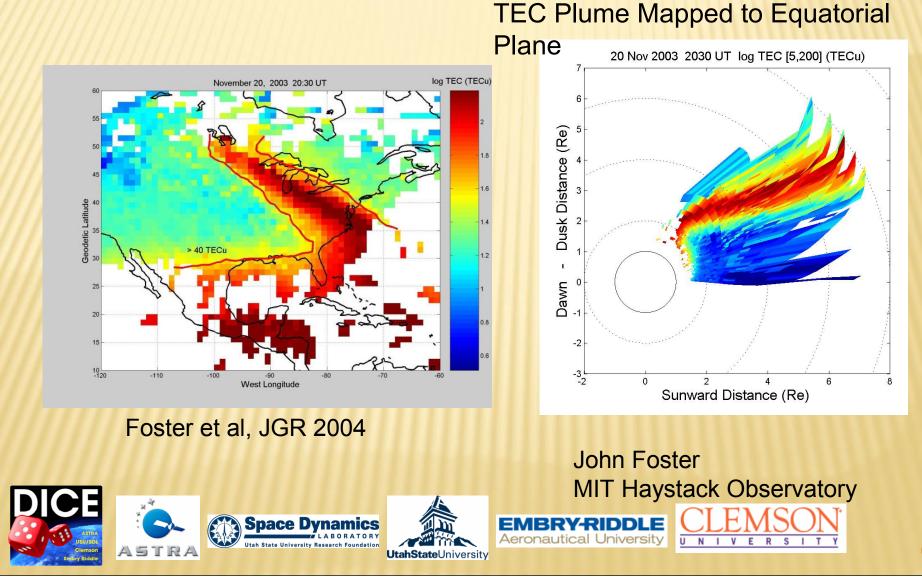
3

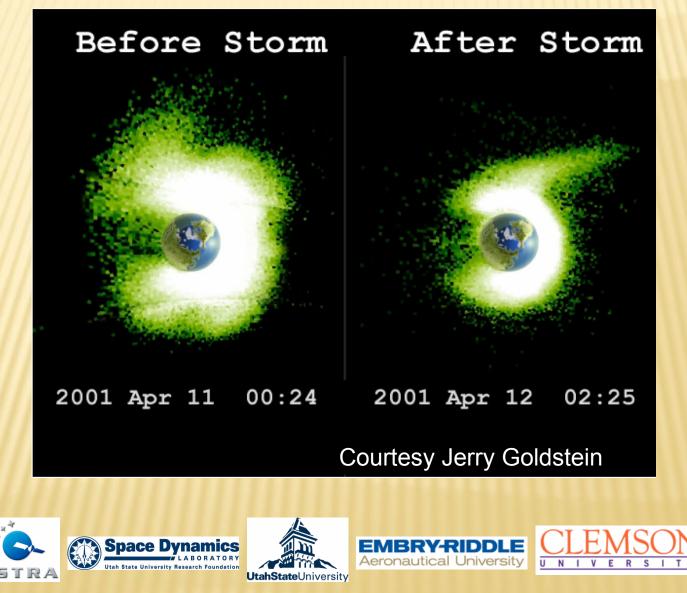
DICE STUDENT TEAM

10+ Students and ~5 Professionals

Dynamic Ionosphere Cubesat Experiment SCIENCE MOTIVATION

November 20, 2003 storm October 30 2003 storm 50 50 b) a) 0 \mathbf{O} Horizontal distribution of peak electron density from 4D simulations





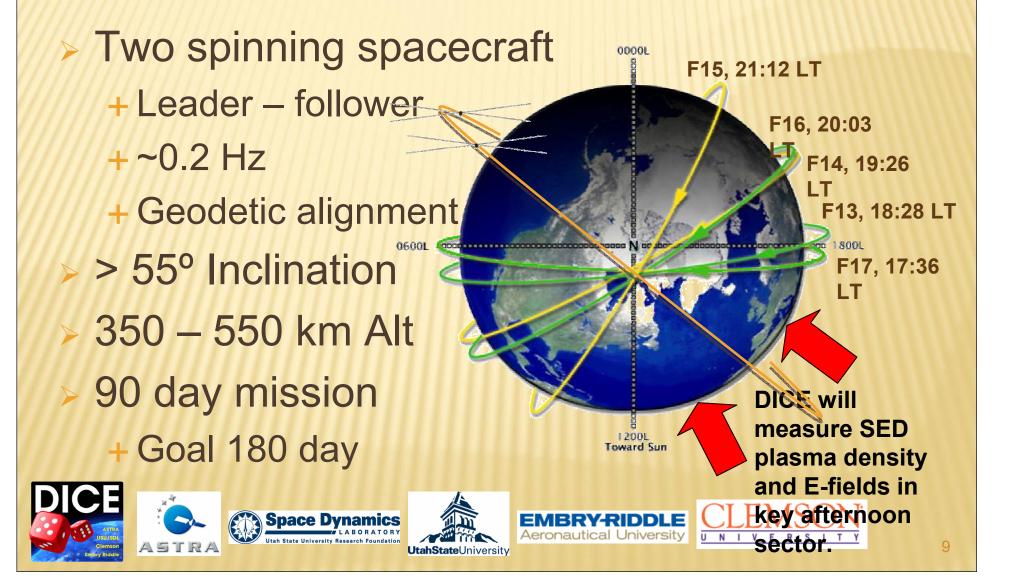
EMBRY-RIDDLE Aeronautical University

Dynamic Ionosphere Cubesat Experiment SCIENCE MOTIVATION



DICE SCIENCE OVERVIEW

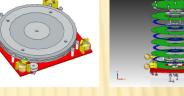
SCIENCE OBJECTIVES


- 1. Investigate the physical processes responsible for formation of the geomagnetic Storm Enhanced Density (SED) bulge in the noon to post-noon sector during magnetic storms.
- 2. Investigate the physical processes responsible for the formation of the SED plume at the base of the SED bulge and the transport of the high density SED plume across the magnetic pole.
- 3. Investigate the relationship between the penetration electric fields and the formation and evolution of SED:

MISSION

SCIENCE REQUIRMENTS

- Measure Electron Density
- Measure E-fields (plasma drift)
- Sun-synchronous orbit in the 12-16LT range is ideal
- Time-resolution of the measurements matches the scale-size of the features to be observed (1000km@ 7km/s = 14 s; cadence of 0.5 to 1 seconds for the plasma and electric field measurements)
- AC electric field spectrum measurements (irregs)
- Expect 1 SED per month
- 6-mo mission yields 6 SED events
- Two 1.5U (10 x 10 x 15 cm) CubeSats
- Common high-inclination pearls-on-a-string orbit.
- The two satellites will remain within ~300 km of one another for up to six months, allowing temporal-spatial deconvolution
- Each satellite will carry identical instrumentation:


INSTRUMENTATION

- Electric Field ~0.2 mV/m
 - + Double Probe Technique
 - + 10 m wire booms
 - + ~80 Hz sample rate
 - Plasma Density ~10²cm⁻³

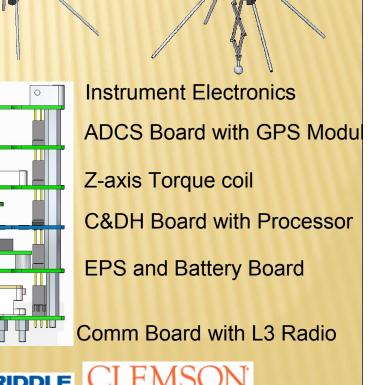
)]]

- + Dual Langmuir Probes
- + ~80 Hz sample rate
- Magnetic Field ~5 nT

Dual Magnetometers Space Dynamics

Aeronautical Universi

HahStateUniversity


DICE SPACECRAFT

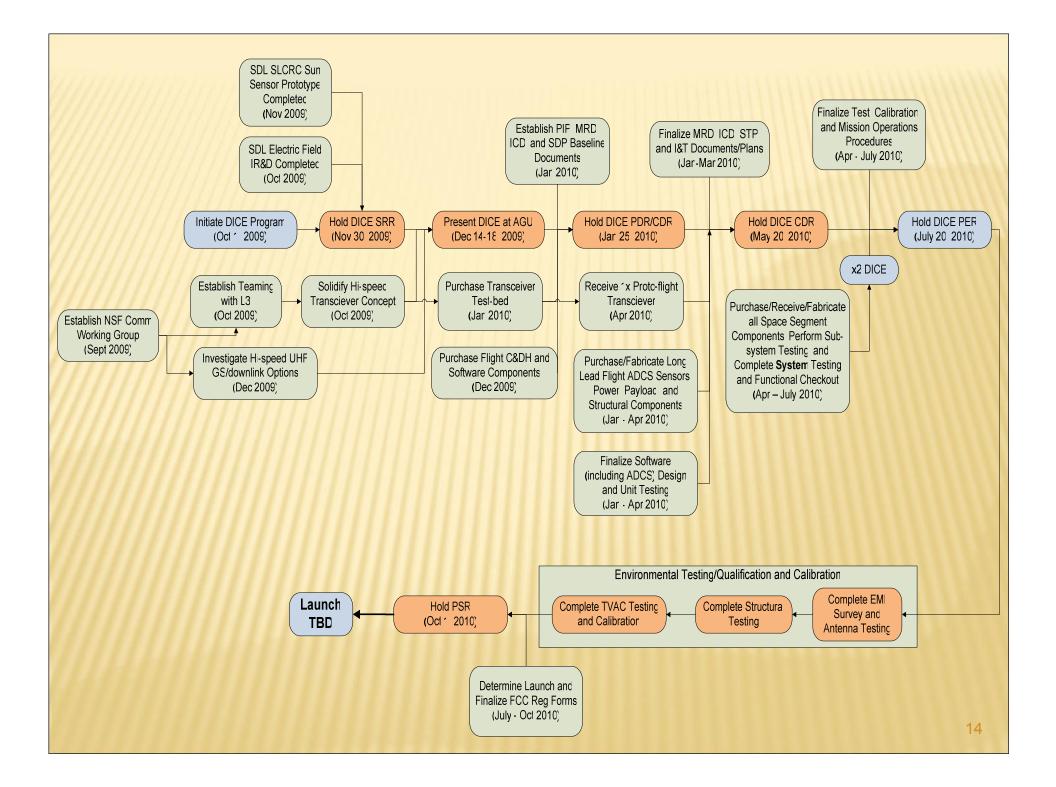
- Pumpkin C&DH System
 - SDL/USU Science board
 - L3 Radio
 - + 1.5 Mbit/s down link
- Sun + Magnetometer
 - + 0.1° Post flight
 - Power

UtahStateUniversitv

Aeronautical University

ANTENNAS AND BOOMS

EFP Booms - 5m
10 m tip to tip
DCP + Mag- 8cm
UHF Comms - 14cm
(460 - 470 MHz, 1.5 Mbit)
TiNi Aerospace Micro Frangibolt

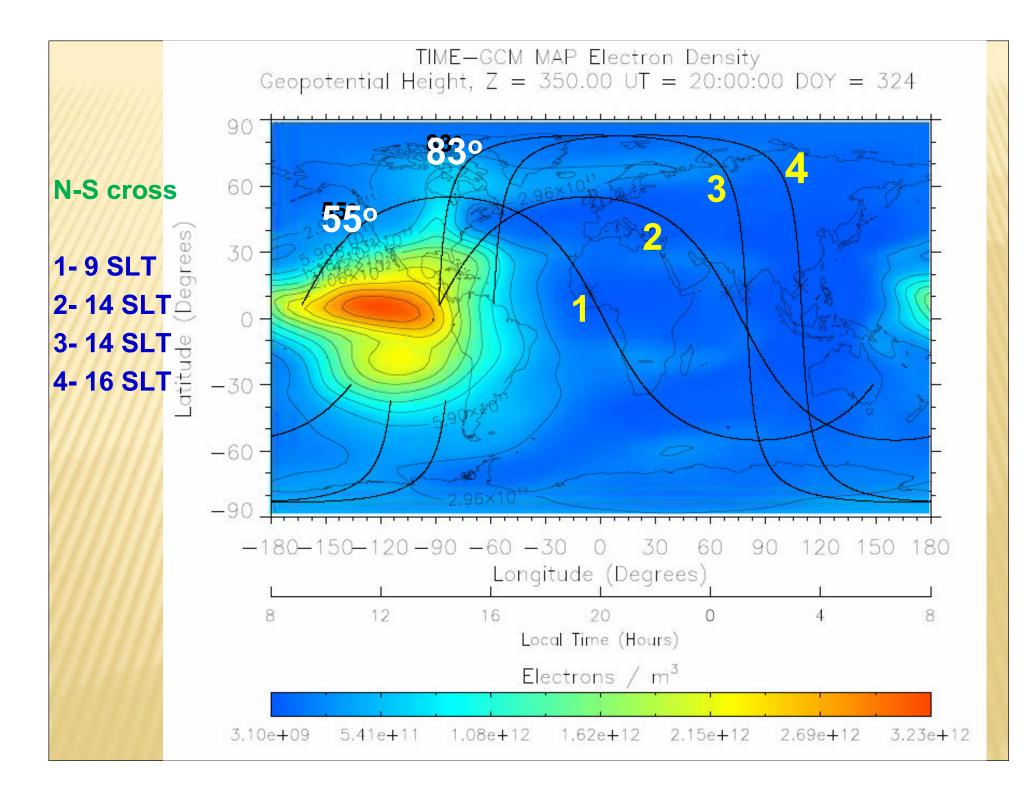

bace Dynamics

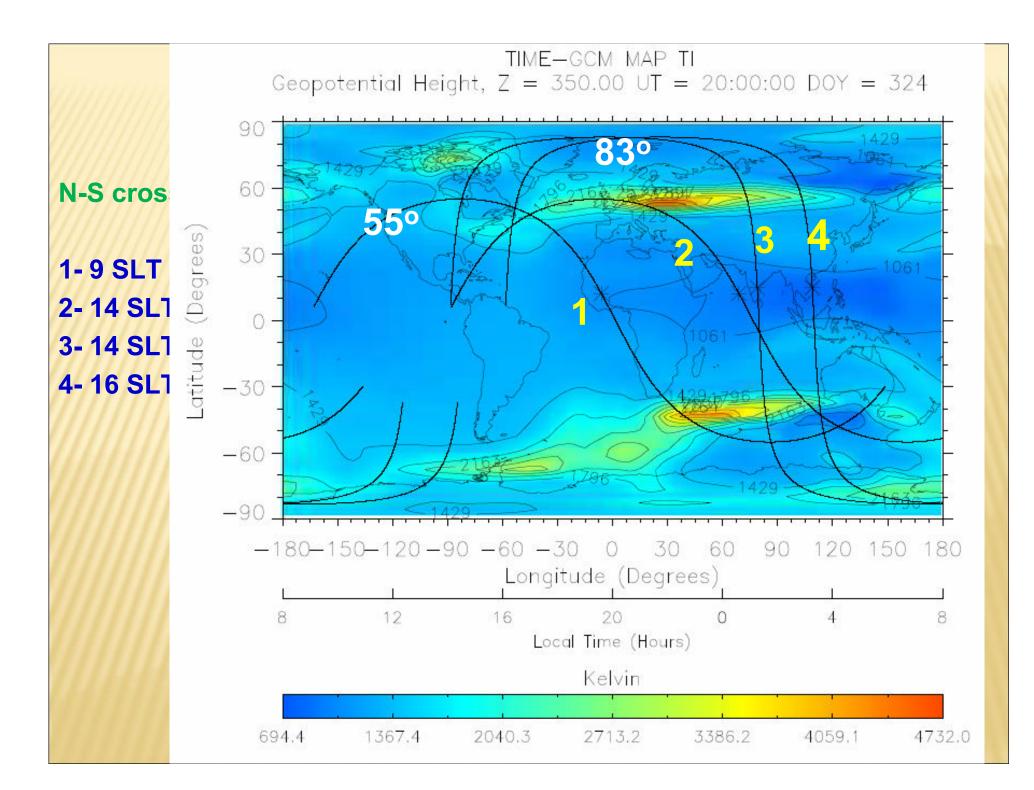
EMBR

UtahStateUniversitv

Aeronautical University

DICE TIMELINE AND STATUS


- NSF funding started 10/1/09
- Student team assembled (12 located at SDL)
- Design and Team conference calls weekly
- Science team conference calls as needed
- Science, Mission and Software requirements completed
- PDR Design Review 1/25/10
- Mechanisms, DC probe-boom etc complete
- Structural analysis complete; thermal analysis in progress
- Solar arrays to be delivered Late April 2010
- Science Instruments and ADCS electronics in layout / fabrication
- Radio licensing spectrum allocation through NSF in progress
- Majority of hardware expected to be fabricated by May 2010
- CDR planned for May 20, 2010
 - Spacecraft/Instrument delivery Oct 2010



15

SOFTWARE: STATUS OF VARIOUS SUBSYSTEMS

- Device Drivers Testing Complete
- Messaging Testing Complete
- Timed Messaging Testing Complete
- Felemetry Module Individual Testing Complete
- Attitude Determination Software Testing Complete
- Attitude Control Software Testing in progress
- Mode Manager Implementation Complete. Testing in progress
- Uplink Task Implementation in progress
- Device Control Library Implementation in progress
- Ground Station Software Implementation in progress

DICE TIMELINE AND STATUS

- NSF funding started 10/1/09
- Student team assembled (12 located at SDL)
- Design and Team conference calls weekly
- Science team conference calls as needed
- Science, Mission and Software requirements completed
- PDR Design Review 1/25/10
- Mechanisms, DC probe-boom etc complete
- Structural analysis complete; thermal analysis in progress
- Solar arrays to be delivered Late April 2010
- Science Instruments and ADCS electronics in layout / fabrication
- Radio licensing spectrum allocation through NSF in progress
- Majority of hardware expected to be fabricated by May 2010
- CDR planned for May 20, 2010

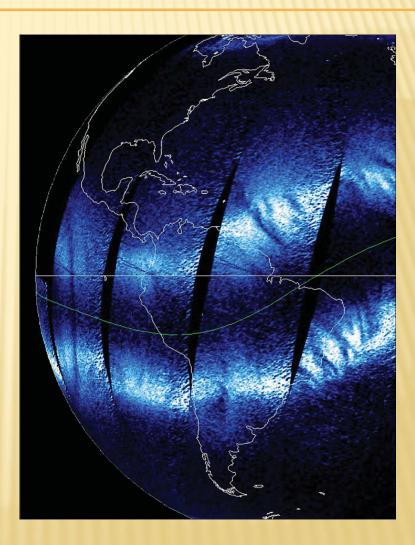
Spacecraft/Instrument delivery Oct 2010

QUESTIONS

Fall AGU 2009

BACKUP SLIDES

ABSTRACT


Dynamic lonosphere Cubesat Experiment (DICE) G. Crowley¹; C. S. Fish²; G. S. Bust¹; C. Swenson²; A. Barjatya³; M. F. Larsen⁴

- 1. ASTRA, San Antonio, TX, United States.
- 2. Utah State University/Space Dynamics Laboratory (USU/SDL), Logan, UT, United States.
- 3. Embry-Riddle Aeronautical University, Daytona Beach, FL, United States.
- 4. Clemson University, Clemson, SC, United States.
- The Dynamic Ionosphere Cubesat Experiment (DICE) mission has been selected for flight under the NSF "CubeSat-based Science Mission for Space Weather and Atmospheric Research" program. The mission has three scientific objectives: (1) Investigate the physical processes responsible for formation of the midlatitude ionospheric Storm Enhanced Density (SED) bulge in the noon to post-noon sector during magnetic storms; (2) Investigate the physical processes responsible for the formation of the SED plume at the base of the SED bulge and the transport of the high density SED plume across the magnetic pole; (3) Investigate the relationship between penetration electric fields and the formation and evolution of SED.

The mission consists of two identical Cubesats launched simultaneously. Each satellite carries a fixed-bias DC Langmuir Probe (DCP) to measure in-situ ionospheric plasma densities, and an Electric Field Probe (EFP) to measure DC and AC electric fields. These measurements will permit accurate identification of storm-time features such as the SED bulge and plume, together with simultaneous co-located electric field measurements which have previously been missing. The mission team combines expertise from ASTRA, Utah State University/Space Dynamics Laboratory (USU/SDL), Embry-Riddle Aeronautical University and Clemson University.

SOURCE OF PLUMES

S

Ν

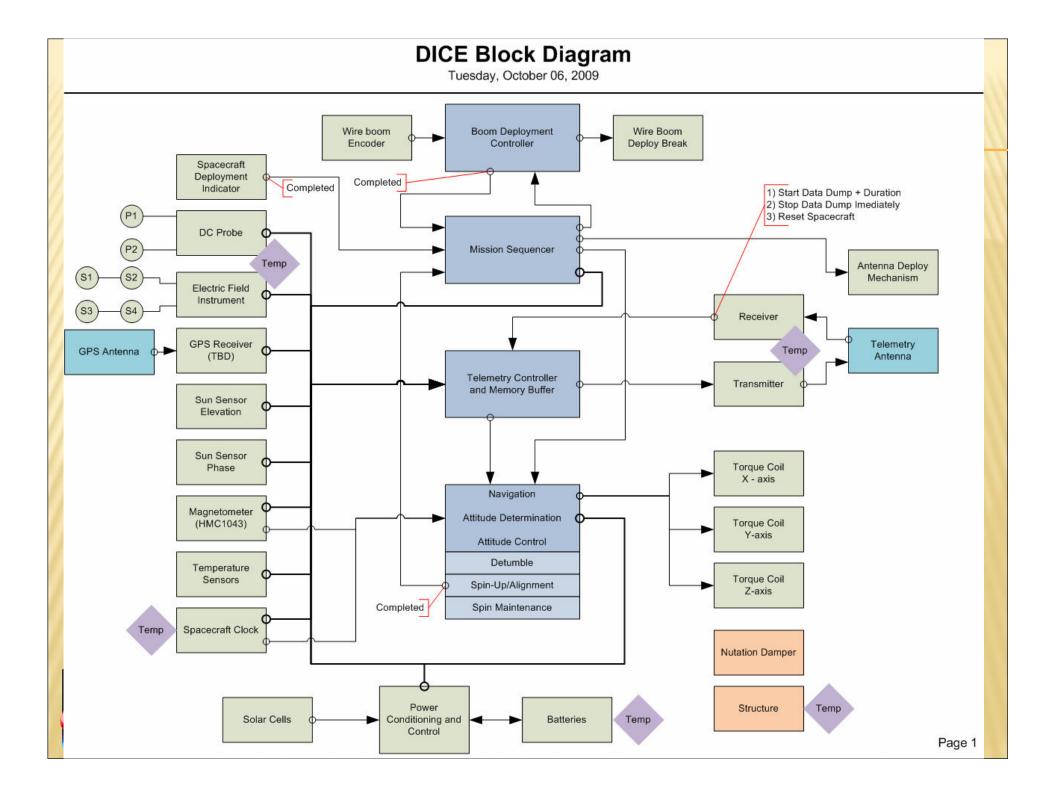


Table 1: Science to Mission Functionality Requirements Traceability Matrix					
Science Object	ctive 1: Investigate formation o	f the SE	CD bulge over the USA		
Measurement	Instrument Requirements Mission Requirements		Mission Requirements		
Requirements	Electric Fields	1. Соло			
Measure RMS Fluctuations	Electric Field:		stellation size ≥ 2 satellites		
in Electric Field and Plasma	1. Max range of ± 0.6 V/m	2. Spacecraft spin ≥ 0.8 Hz			
Density:	2. Min threshold of 0.6 mV/m	-	ecraft spin axis aligned to geodetic axis		
1. Make co-located DC	3. Min resolution of 0.15 mV/m		in $10^{\circ}(1\sigma)$		
electric field and plasma	4. DC sample rate \geq 4 Hz 5. Telemeter DC data at \geq 4 Hz		ecraft spin stabilized to within $1^{\circ}(1\sigma)$		
density measurements at a \leq 10 km on-orbit resolution	5. Telemeter DC data at \geq 4 Hz	about principal spin axis			
	6. AC sample rate \geq 4 kHz 7. Telemeter AC FET never	5. Spacecraft knowledge to within $1^{\circ}(1\sigma)$			
2. Make < 10 meter (AC) resolution electric field	7. Telemeter AC FFT power information at > 1 Uz (2 points)	5. Constellation time synchronization ≤ 1 seconds) 6. Orbital insertion inclination between 55 - 98			
	information at \geq 1 Hz (3 points) Plasma (Ion) Density :				
measurements at a ≤ 10 km on-orbit resolution	1. Range of $2 \times 10^9 - 2 \times 10^{13} \text{ m}^{-3}$	Plasma (Ion) Density: (ideally sun-synchronous at 14-16LT) 1. Dense of $2\pi 10^9$, $2\pi 10^{13}$ m ⁻³			
3. Make measurements on a	2. Min resolution of $3 \times 10^8 \text{ m}^{-3}$				
constellation platform of ≥ 2	3. Sample rate \geq 1 Hz				
spacecraft that are within 200	4. Telemeter data at \geq 1 Hz	8. Circular orbits with eccentricity of ≤ 0.015 9. Spacecraft separation speed of ≤ 20 km/month			
km of each other	4. Telefiletel data at \geq 1 HZ				
KIII OI Cachi other		10. Storage/downlink \geq 31 Mbits/day. 11. Lifetime \geq 6 months			
Science Objec	tive 2: Investigate formation of				
Measurement Requirement			Mission Requirements		
Same as Science Objective 1			Same as Science Objective 1		
Same as Science Objective I	Same as science Objective I		5		
(downlink included in Objective 1)					
Science Objective 3: Investigate correlation of PPE with formation and evolution of SED					
Measurement Requiremen	its Instrument Requireme	ents	Mission Requirements		
Same as Science Objective 1	e as Science Objective 1 Same as Science Objective		Same as Science Objective 1		
			(downlink included in Objective 1)		
		1	5		

TELEMETRY CHANNELS

Channel	Rate	Word Size		Sample Period	
Name	Hz	bits	bits/s	#/Orbit	spatial (km)
Electric Field V12	80	16	1280	444276	0.10
Electric Field V34	80	16	1280	444276	0.10
Density DC Probe 1	80	16	1280	444276	0.10
Density DC Probe 2	80	16	1280	444276	0.10
Magnetometer X-Axis	80	18	1440	444276	0.10
Magnetometer Y-Axis	80	18	1440	444276	0.10
Magnetometer Z-Axis	80	18	1440	444276	0.10
GPS Receiver	0.00072	4096	2.95	4	10646.86
Sun sensor elevation	1.00	16	16.00	5553	7.67
Sun phase sensor	1.00	48	48.00	5553	7.67
Power system (battery)	0.03	48	1.60	166604	230.06
Temp Monitor 1	0.03	8	0.27	166604	230.06
Temp Monitor 2	0.03	8	0.27	166604	230.06
Temp Monitor 3	0.03	8	0.27	166604	230.06
Temp Monitor 4	0.03	8	0.27	166604	230.06
Temp Monitor 5	0.03	8	0.27	166604	230.06
Spacecraft Clock	1.00	48	48.00	5553	7.67
Everything else	0.03	128	4.27	166604	230.06
Rate collected on orbit		Total	9562.15	bits/s	

EMBRY-RIDDLE Aeronautical University

UN

VERS

Required Down Link

Design Element	Symbol	Value	Units
Rate collected on orbit	R _{collected}	9562.15	bits/s
Downlink telemetry rate	R transmitted	1.50E+06	bits/s
Packet overhead	•	7%	Unitless
Available telemetry rate		1388672	Bits/s
Factor of Safety	α	1.05	Unitless
Contact Time Percent	τ_{c}	0.75%	Unitless
Down link rate	Rd	1338701	bits/s
Telemetry Margin		4%	Unitless

Estimated Daily Downlink

Average Daily Data Dump	103.41	M Bytes
Required Daily Data Dump	98.49	M Bytes
Average Contact Time per Day	648.00	S
Estimated contacts/day	2	
Estimated usable contacts duration	324.00	S
Estimated usable contacts duration	5.40	min
Estimated Dump/Contact	51.71	M Bytes

Required Telemetry Buffer

Design Element	Symbol	Value	Units
Onboard Collection Rate	Rc	9562.15	bits/s
Factor of Safety	α	4	
Max Time Between Contacts	τ_{c}	58482	S
Required Telemetry Buffer		2.E+09	Bits
Required Telemetry Buffer		266.65	M Bytes
Required Telemetry Buffer		2133.23	M Bits

Required Transmitter Power

Design Element	Symbol	Value	Units
Transmitter RF Power		1	Watts
Transmitter Efficiency		25%	
Transmitter Power		4.00	Watts
Orbit Average On time		41.65	S
Orbit Average Power		30.00	mW

Required Ground Station Storage

Design Element Symbol	l Value	Units
Baseband Bandwidth	10	MHz
Digitization bits	8	bits
Baseband Sampling Rate	40	MHz
Baseband Sampled Data Rate	320	Mbits/s
Average Data in an Overpass	103680	Mbits/s
Storage Required Per Pass	12.66	G bytes

R S

EMBRY-RIDDLE Aeronautical University

