TubeSat and NEPTUNE 30 Orbital Rocket Programs

Personal Satellites Are GO!

Corporation

Founded in 1996 by Randa and Roderick Milliron, incorporated in 2001 Located at the Mojave Spaceport in Mojave, California 98.5% owned by R. and R. Milliron 1.5% owned by Eric Gullichsen

Initial Starting Technology

Pressure-fed liquid rocket engines

Initial Mission

Low-cost orbital and interplanetary launch vehicle development

Facilities

6,000 square-foot research and development facility Two rocket engine test sites at the Mojave Spaceport Expert engineering and manufacturing team

Core Technical Team

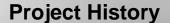
Roderick Milliron: Chief Designer Lutz Kayser: Primary Technical Consultant Eric Gullichsen: **Guidance and Control** Gerard Auvray: **Telecommunications Engineer** Donald P. Bennett: **Mechanical Engineer** David Silsbee: **Electronics Engineer** Joel Kegel: Manufacturing/Engineering Tech Jacqueline Wein: Manufacturing/Engineering Tech Reinhold Ziegler: **Space-Based Power Systems** E. Mark Shusterman, M.D. Medical Life Support Randa Milliron: **High-Temperature Composites**

Key Hardware Built In-House

Propellant Tanks: Combining state-of-the-art composite technology with off-the-shelf aluminum liners

Ablative Rocket Engines and Components

Advanced Guidance Hardware and Software


GPRE 0.5KNFA Rocket Engine Test

Manned Space Flight Training Systems

Rocket Injectors, Valves Systems, and Other Metal components

Pressure-Fed Rocket Engines

GPRE 2.5KLMA Liquid Oxygen/Methanol Engine: Thrust = 2,500 lbs.
GPRE 0.5KNFA WFNA/Furfuryl Alcohol (hypergolic): Thrust = 500 lbs.
GPRE 0.5KNHXA WFNA/Turpentine (hypergolic): Thrust = 500 lbs.
GPRE 3.0KNFA WFNA/Furfuryl Alcohol (hypergolic): Thrust = 3,000 lbs.
GPRE 10.0KNHXA WFNA/Turpentine (Hypergolic): Thrust = 10,000 lbs.

Pressure-Fed Sounding Rockets

Neutrino: GPRE 0.5NFA Engine Tachyon: GPRE 3.0KNHXA Engine

Manned Systems

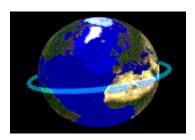
Dick Rutan's Global Hilton Project Helium/Hot Air Balloon System Propane Tanks

Present Mission

NEPTUNE Modular Series Orbital Launch Vehicles

NEPTUNE 30 (30 kg to LEO) NEPTUNE 1000 (1000 kg to LEO) NEPTUNE 4000 (4000 kg to LEO)

Orbital Spacecraft


Orbital Expedition Crew Modules (6-person capacity) Robotic Orbital Supply System (ROSS)

Interplanetary Spacecraft

Google Lunar X PRIZE Lunar Lander Robotic InterPlanetary Prospector Excavator Retriever (RIPPER)

Satellite Design and Manufacture

TubeSat

IOS Unique Satellite Technologies

Low-Cost Pico Satellite Kit – The TubeSat

Satellite casing and satellite ejection system are constructed from off-the-shelf aluminum tubing Manufacturing requires minimal machining Makes use of the latest developments in off-the-shelf electronics Makes use of highly efficient solar cells (26% efficiency) Simple satellite ejection system allows TubeSats to be launched one at a time or in groups of 32 Each TubeSat never comes in contact with other TubeSats in a launch group

Low-Cost Dedicated Launch Vehicle – NEPTUNE 30

All TubeSats have primary payload status

The new IOS TubeSat Personal Satellite Kit is a low-cost alternative to the CubeSat

It has three-quarters of the weight and volume of a CubeSat (weight = 0.75 kg or 1.65 lbs)

Still offers plenty of space for most experiments or applications

The price of the TubeSat Kit (\$8,000) includes the price of a launch into Low-Earth-Orbit on an IOS NEPTUNE 30 rocket

Since TubeSats are placed into self-decaying orbits (310 km), they do not contribute to the long-term buildup of orbital debris

After a few weeks of operation, they re-enter the atmosphere and burn-up

Launches are expected to begin in the fourth quarter of 2010

General Description

Cylinder shaped Maximum weight: 0.75 kg Satellite bus or stand-alone satellite

Power

Batteries: lithium ion 3.6 V Solar Cells: Spectrolab 2.52 V 31 mA (multiples) Power management board

Transceiver Options:

Microhard n425, n920, or n2420 Frequency range: 400 to 450 MHz902 to 928 MHz or 2.4000 to 2.4835 GHz Voltage: 3.3VDC Output: 100 mW to 1,000 mW Selectable

Microcomputer Hardware

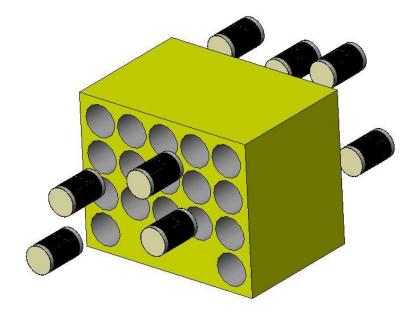
BasicX-24p Rogue Robotics uMMC serial Data Module

Antennas

Dipole

TubeSat Component Layout

TubeSat Component Rack


Experiment or Application Microcomputer and Memory Board Transceiver Power Management Board Battery Pack

Solar Cell and Antenna Placement

TubeSat Deployment System

Interorbital Systems

www.interorbital.com

TubeSat Applications

Earth-from-space video imaging

Earth magnetic field measurement

Satellite orientation detection (horizon sensor, gyros, accelerometers, etc.)

Amateur radio relay

Orbital environment measurements (temperature, pressure, radiation, etc.)

On-orbit hardware and software component testing (microprocessors, etc.)

Tracking migratory animals from orbit

Testing satellite stabilization methods

Biological experimentation

Automatic simple, repeating "message from orbit" transmission

Private e-mail

The builder can add any type of electronics or software application he or she wishes as long as it satisfies the volume and mass restrictions. These restrictions provide a unique intellectual challenge for the application designer.

Call-in or e-mail tech support (Interorbital and/or University partners)

Dedicated support page at www.tubesat.org (coming soon)

On-line password-accessed users' forums

Constantly updated FAQs

Quarterly (or more frequent) user's workshops on-ground or on-line

Documentation: NEPTUNE 30 Rocket User's Manual TubeSat Kit User's Manual

NEPTUNE 30: The TubeSat Launch Vehicle

IOS Unique Launch Vehicle Technologies

Environmentally Safe, Storable, High-Density Hypergolic Propellants

White Fuming Nitric Acid (WFNA) and Turpentine/Furfuryl Alcohol Instantaneous chemical ignition eliminates need for complex ignition system

Low-Cost Propellant Tank Technology

Off-the-shelf aluminum tank liners and tank ends State-of-the-art composite tank reinforcement technology

Blowdown Propellant Feed

Eliminates the need for turbopumps or a separate pressurant system

Unique Rocket Engine Injector

Automatically maintains propellant jet flow rate in blowdown mode Maximizes specific impulse over a wide pressure input range

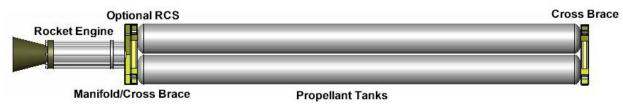
Differential Throttling Rocket Steering Technology

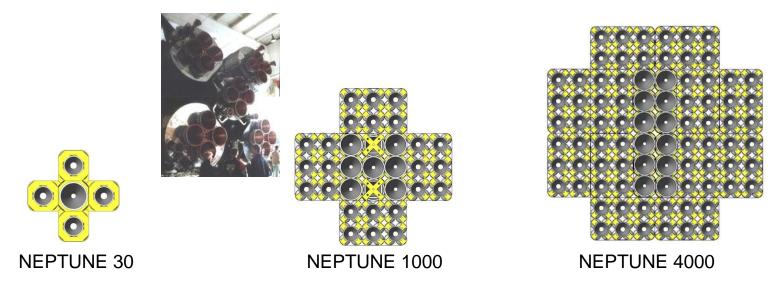
Allows all rocket engines to be fixed Eliminates complex gimballing or fluid injection steering systems There are no steering penalties such as jet-vane drag loss Rockets with throttleable engines don't require hold downs

Modular Rocket System – The Common Propulsion Module (CPM)

Only small rocket engines have to be developed Small rocket engines cost less to develop Small diameter tanks don't require slosh baffles Individual rocket modules can be flight tested at a very low cost Launch vehicle can be customized for any payload

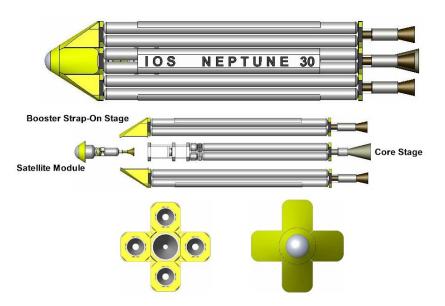
Interorbital Systems


www.interorbital.com



COMMON PROPULSION MODULE

The Common Propulsion Module (CPM) is the Basic Building Block of all Neptune Modular Series Rockets. The CPMs can be clustered together in multiples for both small and large orbital and interplanetary payloads. Clustered engines have been in use since the beginning of the race for space. Below is an aft view of the Russian Soyuz rocket with a cluster of 32 engines. The Soyuz rocket is the most reliable rocket in the world.

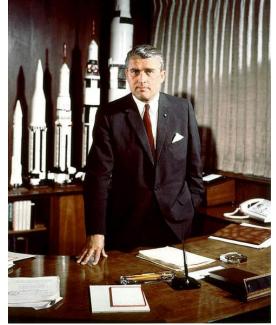

Interorbital Systems

3 stages

31 feet (9.4 m) in length with a maximum width of 6.2 feet (1.89 m)

The GLOW is 18,700 pounds (8,841 kg)

Five (5) Common Propulsion Modules


Satellite Module has a solid kick motor (Thrust = 1,500 lbs.)

Booster Thrust = 4 X 10,000 lbs = 40,000 Lbs SL (177,920 n)

Nitric Acid: Von Braun's Oxidizer of Choice

Wernher von Braun: NASA, OTRAG

Lutz Kayser: OTRAG and Rod Milliron: Interorbital

Lutz Kayser: OTRAG

Interorbital Systems www.interorbital.com

Hypergolic

Η

NEPTUNE 30: Pressure-Fed Propellants

Saphir with Emeraude Booster Stage

Excerpt of a CPM Booster rocket engine test (expansion to ambient) at IOS Alpha Test Site

High-density (1.51) storable oxidizer: White Fuming Nitric Acid (WFNA)
Storable fuels: Turpentine and Furfuryl Alcohol
WFNA is corrosive but non-flammable and non-toxic
Long-term Storage possible in the propellant tanks
Turpentine furfuryl alcohol are are denser than kerosene
Insulated storage tanks not required
Orbital launch vehicle history (Diamant A rocket)

The pressure-fed <u>Diamant A</u> rocket succeeded in placing a satellite into orbit on its first try in November of 1965

NEPTUNE 30 Successes

Rocket engine system components have already been successfully tested
Propellant tank components have been successfully tested
Guidance and Control System has been successfully bench tested
Test infrastructure is already in place (vertical test stand and test site hardware)
Propellant and COTS component suppliers have been identified
Launch site secured on an island in the South Pacific Kingdom of Tonga
Design and manufacturing team is already in place
No existing competition at this price, value, launch frequency, or

performance level

INTERORBITAL SYSTEMS

NEPTUNE 30 Test Program

Ground Systems

Ground transport system Launch platform Rocket lift system Propellant loading system Launch control system Ground communications system

General Launch Procedure

Rocket Hardware

Rocket engine/motor performance in flight Reaction control system Rocket engine throttling system Rocket structural characteristics in flight Rocket stability in flight Grid-fin effectiveness criteria in flight Payload ejection system Recovery system Rocket staging system Spin stabilization

Guidance and Control

Inertial measurement unit Guidance computer Guidance software

Rocket Communication Systems

Transceivers Antennas

Interorbital Systems

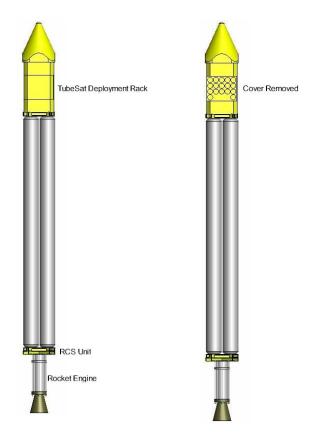
www.interorbital.com

Flight Test Program (CPM)

Common Propulsion Module (CPM) Flight Tests

Launch 1:

Location:Mojave Test AreaRocket:Common Propulsion ModuleAltitude:50,000 feet (15.3 km)Payload:TubeSats and TubeSat deployment system or otherPurpose:Test systems described under Neptune 30 Test ProgramTime Frame:Jan/Feb 2010


Launch 2:

- Location: Mojave Test Area
- Rocket: Common Propulsion Module
- Altitude: 50,000 feet (15.3 km)
- Payload: TubeSats and TubeSat deployment system or other
- Purpose: Test systems described under Neptune 30Test Program with modifications if required
- Time Frame: April/May 2010

Launch 3:

- Location: Mojave Test Area
- Rocket: Satellite Module with solid rocket motor
- Altitude: 20,000 feet (6.1 km)
- Payload: TubeSats and TubeSat deployment system or other
- Purpose: Test spin stabilization system

Time Frame: June 2010

Interorbital Systems

www.interorbital.com

Flight Test Program (NEPTUNE 30)

NEPTUNE 30 Flight Tests

Launch 1:

Location:	Mojave Test Area or Delamar Dry Lake
Rocket:	NEPTUNE 30 with dummy core stage and Satellite Module
Altitude:	50,000 feet (15.3 km)
Payload:	TubeSats and TubeSat deployment system or other
Purpose:	Test systems described under Neptune 30 Test Program
	Test Satellite Module spin-up and deployment system (with recover
	Test differential thrust steering system
	Test rocket stability at Mach 1 and at maximum dynamic pressure
	Test staging system
Time Frame	August/September 2010

Time Frame: August/September 2010

Launch 2:

- Location: Tonga Spaceport
- Rocket: NEPTUNE 30
- Altitude: 312 km (193.3 mi)
- Payload: 32 TubeSats and TubeSat deployment system or other
- Purpose: First orbital satellite launch
- Time Frame: November/December 2010

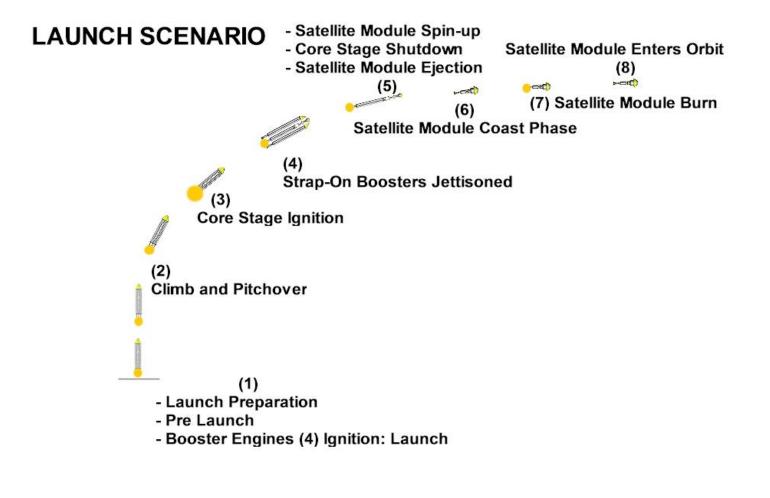
Flight Test Payload Options

Common Propulsion Module, Satellite Module, or Staging Test

Maximum Payload: Payload Type: 30 kg Up to 32 TubeSats Up to 15 CubeSats Single Payload

CPM test vehicle is recoverable

Orbital Launch

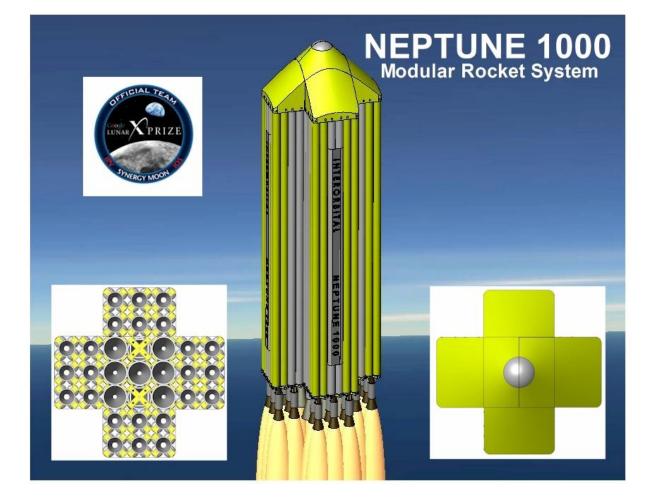

Maximum Payload: Payload Type: 30 kg Up to 32 TubeSats Up to 15 CubeSats with 5 P-Pods Single satellite with deployment system

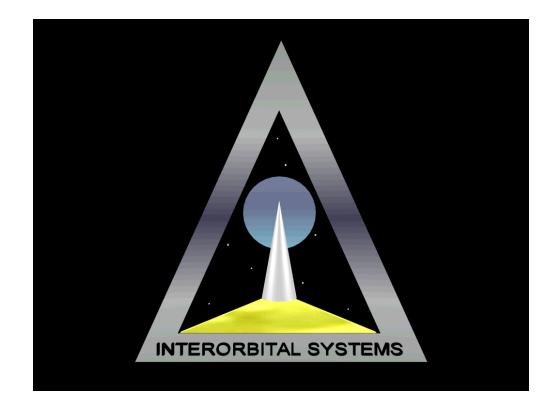
FAA/AST launch license for orbital launches: in process

IOS held one of the first Commercial Space Transportation Launch Licenses (LLS 00-054, October, 2000) for Tachyon sounding rocket

Obtained: Two active 365-day FAA waivers for pre-orbital flight tests to 50,000 ft. at Mojave Test Area, California, and at Delamar Dry Lake, Nevada

IOS' Tongan Spaceport





Latitude: 21.45 degrees S Longitude: 174.90 degrees W

NEPTUNE 1000: Moon Rocket

WWW.INTERORBITAL.COM