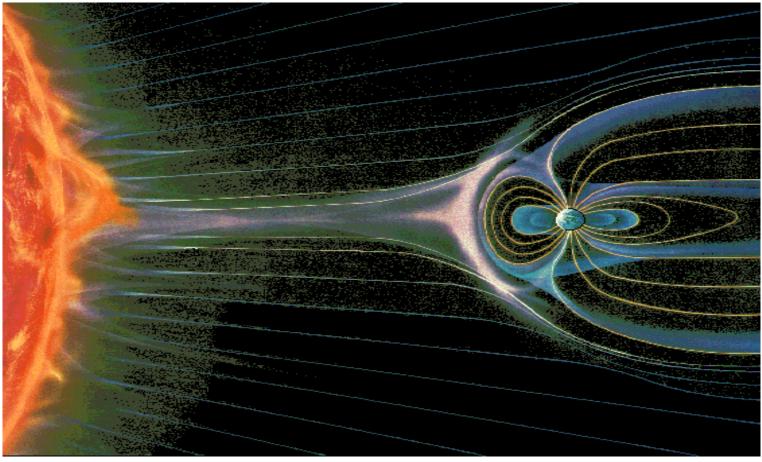


LEO Radiation, Its Effects on Electronics and Mitigation Approaches, A Primer

Chris Day Electrical Engineer Advanced Network and Space Systems

> Chris.a.day@boeing.com 4-24-09

Background taken by Boeing PicoSat CSTB1 using its 1cm aperture imager


This document does not contain technical data within the definition contained in the International Traffic in Arms Regulations (ITAR) and the Export Administration Regulations (EAR), as such, it is releasable by any means to any person whether in the U. S. or abroad. The Export Compliance log number for this document is RBE095. (Assigned IAW PRO-4527, PRO 3439)

BOEING is a trademark of Boeing Management Company. Copyright © 2006 Boeing. All rights reserved.

Radiation Near Earth

Advanced Network and Space Systems

- Particle radiation mostly from the sun
- Earth's Magnetosphere deflects and focuses particles

Janet Barth http://radhome.gsfc.nasa.gov/radhome/papers/apl_922.pdf рнаптом works

Radiation Terms

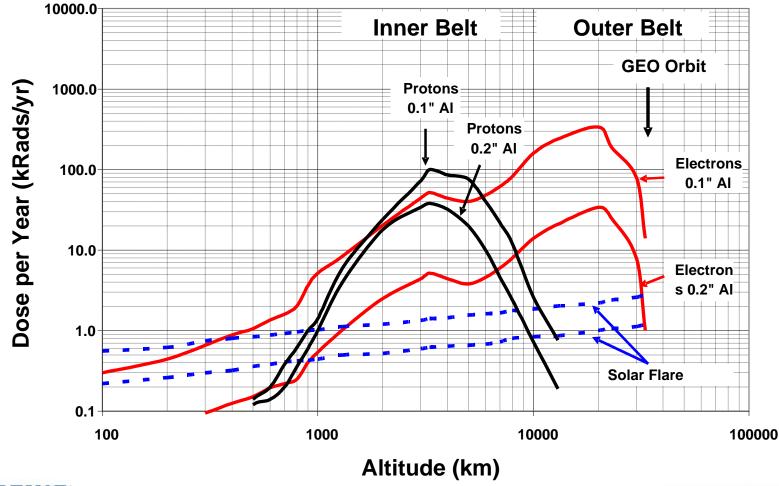
Advanced Network and Space Systems

Term	Description	Units	Diagram
Linear Energy Transfer (LET)	Energy per Unit Length	MeV/mg/cm ²	
Total lonizing Dose (TID)	Density of Energy Deposition	Rad	
Displacement	Displaced Atoms, One Category of TID Effect	Equivalent Number of Standard Particles/cm ²	

Relevant Radiation Sources in LEO

Advanced Network and Space Systems

Particle	Charge	Source	Energy	Effects
Electrons	-	Rad Belts	0-7 MeV	TID
Protons	+	Rad Belts, Solar flares	0-400 MeV	SEE, TID
Heavy lons	+/-	Cosmic Rays, Solar Flares	> 10,000 MeV	SEE
Gamma Rays	0	Deep Space	>100keV	SEE, TID
X-Rays	0	Solar Flares	<120keV	SEE, TID
UV	0	Sunlight	<124eV	Solar Cell Degradation



Levels of Radiation in Space, a Point Example

Advanced Network and Space Systems

Dose (kRads/yr) vs Altitude at 90 Deg

Some of the Effects of Radiation on Electronics

Advanced Network and Space Systems

TID effects

- Accumulated effect of long term radiation damage
- Increases component current consumption
- Decreases component performance: high leakage current, low gain, etc.
- Single Event Upset (SEU)
 - -A "bit flip"
 - -Causes data corruption
 - -No permanent damage

- Single Event Functional Interrupt (SEFI)
 - Interrupts normal component operation
 - Non-permanent failure: power
 cycle or re-initialize component
 to restore operation
- Single Event Latchup (SEL)
 - -Part does not operate correctly
 - -Causes excessive current flow
 - -Can permanently damage component or power supply

Mitigation Approaches

Shielding

- -Reduces TID and somewhat reduces Single Event Effects (SEEs)
- Aluminum and copper are often used for bulk shielding
- -Tantalum used for spot shielding
- Rad-hard parts selection
 - -SEE specification
 - -TID testing
 - –Rad-hard (or Rad-tolerant) by design

Advanced Network and Space Systems

Redundancy

- -Redundant circuits
- -Triple Mode Redundancy (TMR)
- -Code redundancy
- Error detection and correction (EDAC)
 - -Detects single and multiple bit errors
 - -Corrects one or more bit errors
 - -Forward Error Correction
- Memory scrubbing
 - Periodically read and correct data

Mitigation Approaches

- Limit current or Turn off circuits with excessive current consumption
 - Reduces chance of damage from SEEs.
 - Removing power allows
 SELs to reset if permanent damage did not occur.
- Turn off devices when not in use
 - Lowers chance of damage from radiation events

- Part de-rating and increase operating margin
 - Reduces likelihood of some SEE
 - –Increases longevity
- Turn satellite systems off or change operating schedule in response to space weather
 - -Response to Coronal Mass Ejections (CMEs)
 - Radiation effects are reduced when electronics are powered off

References to Radiation Environment Information

Advanced Network and Space Systems

- Minimalist Fault-Tolerance Techniques for Mitigating Single Event Effects in Non-Radiation Hardened Microcontrollers. Douglas Caldwell's Ph.D. Thesis
 - http://www.cs.ucla.edu/~rennels/dougdiss.pdf
- CP2 CubeSat electronics design. Chris Day's Masters Thesis
 - http://polysat.calpoly.edu/PublishedPapers/ChrisDay_thesis.pdf
- Ionization and plasma data from DMSP
 - http://cindispace.utdallas.edu/DMSP/
- Nuclear and Space Radiation Effects Conference
 - http://www.nsrec.com/
- Radiation Environments Short Course
 - http://radhome.gsfc.nasa.gov/radhome/papers/slideshow10/SC_NSREC97/index.htm
- Space radiation, effects, and mitigation
 - http://www.jhuapl.edu/techdigest/td2801/Maurer.pdf
- Firmware failures and watchdog technology
 - <u>http://www.embedded.com/www.embedded.com/columns/showArticle.jhtml?articleID=9</u> 900877
- White papers on space technology
 - <u>http://www.maxwell.com/microelectronics/technical-support/white-papers.asp</u>

