Making it Small

April 22-24, 2009

2009 Cal Poly Developers' Workshop California State Polytechnic University San Luis Obispo, CA

> Prof. Bob Twiggs Bob.Twiggs@Stanford.Edu

What started the miniaturization trend?

ORBITING PICOSATELLITE AUTOMATED LAUNCHER

3

Shipping to Utah May 14,1999

Launch at Vandenberg, AFB

Operational Antenna at Stanford

Operation at Stanford

Operation at Stanford

Operation at Stanford

Ground Stn : Pale filts Dete: Saturit : Cool Pff : Inclination: 100,200 deg Orbit : 102 84.4 5 N 00ject Sun Rz/G1 206.0 -54.7 deg Trado Rown Rz/G1 206.0 -54.7 deg Trado State Vector X: -7.014 deg / Rowge Rate: -5.234 be/s State Vector X: -700.066 In VC: +4.651 be/s Duration : 6/00:10:23 Mart.US: 132/2016:26 Pff	THEOREMU BESPLAY NPROVER Wed 625'4600 Dawnlak FM : 427,1092 NW2 33 28184:35 Uplick FM : 427,0900 NW2 B3 28184:35 Uplick FM : 427,0900 NW2 Bandak Loss: 155,8100 dB Ct : 25641 SUPA Sum Regit 55,8100 dB Ct : 25641 SUPA Sum Regit 155,8100 dB Ct : 25641 SUPA Sum Regit 155,8100 dB Ct : 25641 Sum Regit 155,8100 dB Ct : 25641 Sup Sum Regit 155,8100 dB Ct : 25641 Sup
Rucces DPSQL 78.1 kp Ki	Ret Elevention: Tak too or RL Range : 145, too in JANSAT Orbit: 102 Lat: 65 N Lrg: 119 N 02Feb00 2 Palo Baro
[phinsed-temp4 deta]s echs "cat on" > /Pep/radio (phinsed-temp4 deta)s spalcrypt Unaps: spalcrypt mose Where more is the know	

Operation at Stanford showing satellite rotating

Problem?

Too Big Too Long to Build Too Costly to Launch

Proposed CubeSat – The Next Generation

Make a Standard

4" x 4" x 4" cube → 10cm cube 1 kg

CubeSat

CubeSat

Poly Picosatellite Orbital Deployer (P-POD)

Example of Standard CubeSat (Cal Poly: CP1) Who is now using smallsats? International Universities Science Foundation-Space Weather DARPA-?? NRO-?? US Army-?? NASA ARC- Biological Research NASA Goddard-??? **Boeing- Proof of Concept** The Aerospace Corp.- MEPSI Technology ESA- ?? Lockheed Martin – University of Florida

16

The Future?

Further Miniaturization?

What was so unique about the Volkswagen produced in Germany after WW II?

It was "the people's car".

Practical and affordable.

What was the Apple computer?

It was "the people's computer".

Practical and affordable.

What is Twitter?

140 character messages

If you could get 140 characters from space twice/day, what would you do with it?

Could you conduct any meaningful space activity for 140 characters from space twice/day?

Twitter is "the people's messenger".

Practical and affordable.

Now, how about "a peoples satellite"?

Practical and affordable.

Comments - present satellites

•Present CubeSat too Big?

•Cost too much to launch!

•Everyone needs new challenges.

How about a "VolksSat"? How about a VolksCube"? How about a "TwitterSat"?

Group name	Wet Mass	
Large satellite	>1000kg	
Medium sized satellite	500-1000kg	
Mini satellite	100-500kg	
Micro satellite	10-100kg	
Nano satellite	1-10kg	Small Satellites
Pico satellite	0.1-1kg	
Femto satellite	<100g	

How about a satellite that fits in your Pocket?

Miniaturize to fit in your pocket? Here is an example.

The electronics industry has evolved as packages have gotten smaller and smaller. For example, the 14-pin dual-inline package (DIP) is now today's micro-SMD. Shrink

67 M9430A1 LM348N

AB

The Evolution of CubeSats in Education

How about a 5cm cube?

Fempto Sat?

What should we call it?

What should we call it?

How about PocketQub?

Put 8 together -

Use P-POD concept to launch 8

-PocketQub

CubeSat picosatellite

P-POD compatible

Using English Dimensions?

Used metrics for CubeSat.

Why not metrics for PocketQub?

It is time those metric guys learned English units.

What if you wanted to build and launch your own private satellite? What is stopping you? Don't know how to build it? Not likely – get a kit. Too costly? – get easy payment plan. What is the biggest single cost? Launch Launch Launch

What is a private affordable launch cost? What would be your budget?

Your salary - \$100k

Pay \$250k for a launch.

\$200k?

44

What does PocketQub do? Reduce launch cost.

\$40k/CubeSat - \$5k/PocketQub

\$80k/CubeSat - \$10k/PocketQub

Launch cost reduction? \$40k/CubeSat - \$5k/PocketQub \$80k/CubeSat - \$10k/PocketQub Not the cost of an SUV anymore Less than the cost of my last motorcycle.

New launch goals:

Kentucky launch of first PocketQub within one year – March 2010

Any other challenges?

Have your own vanity satellite!

Students won't get all of the fun.

It may say -

"Hello Jordi" "Hello Jordi"

"Hello Jordi"

As it goes overhead.

Having fun before you go to orbit.

Thank You