

Build Your Own or Buy Off The Shelf?

Daniel Erb http://www.kentuckyspace.com CubeSat Developers Workshop San Luis Obispo, CA 23 April 2009

Overview

- The Three Constraints (plus One)
- □ A Quantitative Approach
- □ What to Expect
- □ What Not to Expect
- Thoughts for Third Party Developers

Kentucky

23 April 2009

CubeSat Developers Workshop

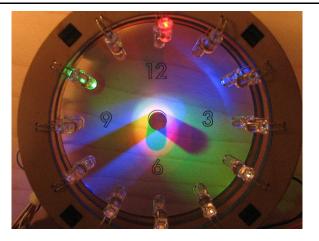
2/14

The Three Constraints

- Performance; Schedule ;
 Budget
- Only two of these can be constrained

All decisions must take into account the effect they will have on these constraints; particularly on the how the unconstrained must change

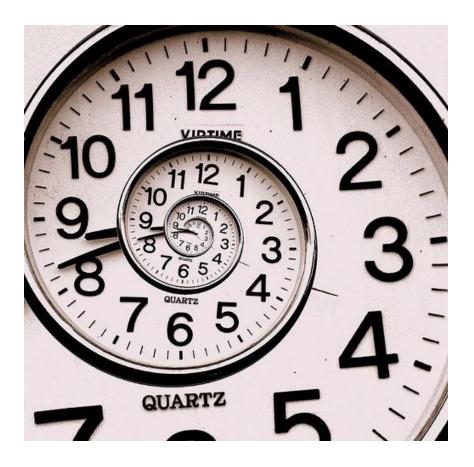
...plus One


What kind of experience should/must be gained?

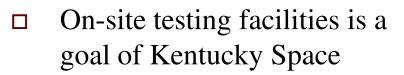
- □ For the Program
 - Increase In-House Knowledge
 - Avoid Single String Suppliers
 - Gain Industry Partners
- □ For the Participant
 - Increase Individual Knowledge
 - Work With Third Parties
 - Integrate/Troubleshoot a Black Box Design

Performance

- □ In House
 - Customizable
 - Knowledge Base
 Required
- □ Third Party
 - Leverage Existing Knowledge
 - Limits to
 Customizability


Example – StenSat Radio

- ConOps required a relatively high powered transmitter
- Lack of RF building experience led to an off-theshelf solution
- Solution lacked the ability to adjust power output
- Inability to customize led to a negative power budget


Schedule

- □ Third Party
 - Off the Shelf/Instant Gratification
 - Unforeseen delays due to integration/troubleshooting
- □ In House
 - Designed with integration in mind
 - Allows for easier troubleshooting
 - Lack of experience can cause gross underestimation

Example – Vibration Facility

- Facilities included custom fixturing and custom control software
- Lack of experience led to gross underestimation of the time necessary
- ~10 months behind schedule the shaker is still not fully operational

Space

Budget

- Development costs are low in academia; much higher in industry
- Third party designs are generally much more costly
- When looking strictly at dollars; it almost always makes sense to design in-house



A Quantitative Approach

- How to deal with the interplay between all the constraints?
- Attempt to quantify and look for relationships
 - Cost Benefit Analysis
 - Risk Benefit Analysis
 - Risk Value Analysis

Risk Value Analysis

$Value = \frac{Performance \times GoodFeeling}{Cost \times Hassle}$

- Performance How well does the technology fit the requirements
- □ Good Feeling On time, good communication, education
- □ Cost Total opportunity cost
- \Box Hassle Red tape, failed parts

 $Risk = \frac{Complexity \times Significance}{Experience \times Heritage}$

- Complexity How much does this technology have to do
- Significance What is the potential impact from failure
- Experience How much experience does the developer have with working with this technology
- □ Heritage TRL

Expectations

- □ What to Expect
 - Accurate Specs
 - Full Disclosure of Bugs/Design Changes
 - Easy Communication
 - Troubleshooting Help

- □ What Not to Expect
 - Plug and Play
 - Full Disclosure of Design
 - Instant Communication
 - Automatic Credulity

Third Party Developers

- Everyone makes mistakes;
 disclose problems
- Don't overstate specs
- Don't promise what can't be delivered
- Disclose design changes and update specs
- StraightforwardCommunication

