# ГА Results, and Satellite Validation Optos Programas Espaciales V Ciencias deltas

new light is so

Jose Miguel Encinas encinaspjm@inta.es

**INTA** 

2009 CUBESAT DEVELOPERS WORKSHOP

23rd APRIL 2008

#### CONTENTS

□ INTA R+D **OPTOS** □ STM DESCRIPTION STM TEST CAMPAIGN □ STM VALIDATION THERMAL MECHANICAL PFM TEST CAMPAIGN

ОРТОВ

23<sup>rd</sup> April 2009



#### INTA (www.inta.es)

- The Spanish National II (INTA) has focused a grea in the development c technologies (MINISAT, NA
- The latest development based on a small platform of the art technologies ser efficiency low cost multi industrial/agency level re budgets.
- OPTOS will be the new 3-L
- OPTOS will be used as a te



23<sup>rd</sup> April 2009

#### OPTOS (I)



The payloads on board for the first mission are:

GMR (Giant Magneto Resistance sensors for magnetic field measurement)



23<sup>rd</sup> April 2009



### OPTOS (II)

It uses advanced subsystem technologies for satellites of its kind, such as:

- ADCS: Redundant attitude control and determination with three axis control, providing accuracy suitable for Earth observation purposes
- OBCOM: Includes an innovative on board communication system by use of light emitting diodes and sensors which allows communications between boards simultaneously, fast and wireless by means of light, hence optimizing space and integration of the overall system. It also uses a reduced BUS-CAN communication protocol
- OBDH: Distributed data handling CAN based subsystem counting with programmable devices such as CPLDs and FPGAs
- Internal structure: Composite carbon fibber structure

23<sup>rd</sup> April 2009



## OPTOS (III)

- OPTOS is managed under ESA standards
- CDR has just been p
- STM test campaiç successfully
- Design has been fro:
- Future actions:
  - Subsystem and payload functional tests
  - Integration of the satellite
  - PFM test campaign

23<sup>rd</sup> April 2009

#### OPTOS STM (I)





□ STM model represents/ **OPTOS** from structure and thermal points of view STM model has been used to validate mechanical and thermal analyses

23<sup>rd</sup> April 2009



#### OPTOS STM (II)

- Mechanical:
  - Internal and external structures similar as the ones in the flight model
  - Boards with payloads and subsystem included with mass dummies and flight connectors



23<sup>rd</sup> April 2009



#### OPTOS STM (III)

#### **Thermal**:

- Resistances with aluminum box to simulate the dissipation produced in each board
- Includes thermal sensors TMP-036 that will be used in PFM model



23<sup>rd</sup> April 2009

#### OPTOS STM (IV)



23<sup>rd</sup> April 2009



E S

A M

Ρ

A

G

#### STM TEST CAMPAIGN

SHUTTER

**MECHANISM** 

Manufacturing

**STM** 

**Initial Inspection** 

**Thermal Balance** 

**Visual Inspection and Check** 

Vibration tests

**Visual Inspection and Check** 

**Mass Properties** 

**Final inspection** 



ANTENNA DEPLOYMENT

23<sup>rd</sup> April 2009



#### THERMAL ANALYSIS

- Mathematical model using over 250 nodes in a finite element environment
- It has been analyzed and foreseen with tools like ESArad and ESAtan
- The satellite should comfortably operate within ranges between -20°C / +50°C, well within operability requirements for every component.
- The temperature estimations are being verified via an STM procedure involving thermal balancing in quasi vacuum conditions at INTA.

23<sup>rd</sup> April 2009

#### STM THERMAL BALANCE TEST



| Board<br>Number | S/S or PL            | Resistance<br>Quantity | Resistance<br>value (Ω) | Tension<br>(V) |
|-----------------|----------------------|------------------------|-------------------------|----------------|
| Board 1         | BATTERY<br>BOARD     | 1 (variable<br>power)  | 100                     | 4/5/6/7        |
| Board 2         | POWER 1<br>BOARD     | 1                      | 22                      | 5              |
| Board 3         | ODM + MGM<br>BOARD   | 0                      |                         |                |
| Board 4         | GMR BOARD            | 1                      | 15                      | 5              |
| Board 5         | FIBOS BOARD          | 0                      |                         |                |
| Board 6         | INT. ADCS<br>BOARD   | 1                      | 100                     | 5              |
| Board 7         | POWER 2<br>BOARD     | 2                      | 50/22                   | 5              |
| Board 8         | EPH BOARD            | 1                      | 22                      | 5              |
| Board 9         | TTC BOARD            | 1                      | 22                      | 5              |
| Board 10        | TOP PAYLOAD<br>ASSY. | 0                      |                         |                |
| Board 11        | SHUTTER<br>BOARD     | 0                      |                         |                |

23<sup>rd</sup> April 2009

#### STM THERMAL BALANCE RESULT



23<sup>rd</sup> April 2009

2009 CubeSAT Developers' Workshop

OPTO

#### MECHANICAL ANALYSIS MODELS AND ANALYSES



ON-ORBIT CONFIGURATION

□ Modal analysis

LAUNCH CONFIGURATION

Modal analysis

Static analysis

Sine analysis

Random analysis

Linear approximation used in all analyses

2009 CubeSAT Developers' Workshop

23<sup>rd</sup> April 2009

#### OPTOS FEM (I) INTERNAL VIEWS



OPTOS

#### OPTOS FEM (II) DEPLOYED CONFIGURATION

OPTOS OUTSIDE DEPLOYER
22659 NODES
21144 ELEMENTS
1<sup>st</sup> NATURAL FREQUENCY OF ANTENNAS:

4.2 Hz (BeCu)
5.6 Hz (AISI 316)

23<sup>rd</sup> April 2009

#### OPTOS FEM (III) LAUNCH CONFIGURATION



 OPTOS INSIDE DEPLOYER
 22950 NODES
 22524 ELEMENTS
 FIRST NATURAL FREQUENCY 165.95 Hz

23<sup>rd</sup> April 2009

#### MODAL ANALYSIS NATURAL FREQUENCIES



 Most representative normal modes.
 All of them are related with carbon fibber structure, boards and solar arrays

23<sup>rd</sup> April 2009

#### MODAL ANALYSIS Mode 1: 165.94 Hz

Patran 2007 r1b 10-Dec-08 17:08:33

Deform: apoyos, A5:Mode 1 : Freq. = 165.94, Eigenvectors, Translational, , (NON-LAYERED)

#### BENDING OF BATTERY BOARD

default\_Deformation : Max 2.78+000 @Nd 40136

78+000

23<sup>rd</sup> April 2009



#### MODAL ANALYSIS Mode 2: 173.29 Hz

Patran 2007 r1b 10-Dec-08 17:14:07

Deform: apoyos, A5:Mode 2 : Freq. = 173.29, Eigenvectors, Translational, , (NON-LAYERED)

BENDING OF UPPER SIDE OF COMPOSITE STRUCTURE

default\_Deformation : Max 4.87+000 @Nd 12091

23<sup>rd</sup> April 2009

#### RANDOM ANALYSIS MAXIMUM STRESSES. MARGINS OF SAFETY

|                         |                     |       | -     |
|-------------------------|---------------------|-------|-------|
| OPTOS COMPONENT         | MAX STRESS<br>(MPa) | Msy   | Msu   |
| COMPOSITE STRUCTURE     | 48,64               | -     | 10,45 |
| LATERAL SUPPORTS        | 12,39               | 19,77 | 17,64 |
| CENTRAL BODY OF CubeSAT | 64,35               | 0,56  | 0,66  |
| COVERS OF CubeSAT       | 104,22              | 0,00  | 0,02  |
| P-POD                   | 24,38               | 2,01  | 3,23  |
| BATTERY BOARD           | 17,46               | 0,79  | 0,38  |
| EPS 1 BOARD             | 4,14                | 6,56  | 4,84  |
| ODM + MGM BOARD         | 8,12                | 2,85  | 1,97  |
| GMR BOARD               | 6,15                | 4,09  | 2,93  |
| FIBOS BOARD             | 11,84               | 1,64  | 1,04  |
| ADCS PLATE              | 17,52               | 8,90  | 7,85  |
| EPS 2 BOARD             | 5,17                | 5,05  | 3,67  |
| EPH BOARD               | 3,25                | 8,61  | 6,42  |
| SHUTTER BOARD           | 10,69               | 1,92  | 1,26  |
| SOLAR ARRAYS            | 5,07                | 5,17  | 3,77  |

 Dimensioning loads are derived by using a quadratic combination of low frequency loads, and the random environment
 Safety factors:

- □ Yield: 1.5
- Ultimate: 2.0
- All margins positive

23<sup>rd</sup> April 2009

#### RANDOM ANALYSIS DISPLACEMENTS

| OPTOS COMPONENT     | MAX DISPLACEMENT<br>(mm) |  |
|---------------------|--------------------------|--|
| COMPOSITE STRUCTURE | 0,096                    |  |
| BATTERY BOARD       | 0,319                    |  |
| EPS 1 BOARD         | 0,128                    |  |
| ODM + MGM BOARD     | 0,259                    |  |
| GMR BOARD           | 0,219                    |  |
| FIBOS BOARD         | 0,299                    |  |
| ADCS PLATE          | 0,319                    |  |
| EPS 2 BOARD         | 0,146                    |  |
| EPH BOARD           | 0,153                    |  |
| SHUTTER BOARD       | 0,086                    |  |
| ттс                 | 0,108                    |  |

Maximum displacements are under the allowed gap Patran 2007 r1b 11-Dec-08 16:23:34 Deform: 1\_g\_Z, A8:Static Subcase, Displacements, Translatic

23<sup>rd</sup> April 2009



#### STM VIBRATION TEST TEST SET-UP





Accelerometers (monoaxial and triaxial)

Five internal
Three external
One in P-POD
One in base plate
Two for control

20 channels used

2009 CubeSAT Developers' Workshop

23<sup>rd</sup> April 2009

#### STM VIBRATION TEST TEST SEQUENCE



23<sup>rd</sup> April 2009



#### STM VIBRATION TEST TEST RESULTS



Y axis accelerometer located in the +Y wall of composite structure beside TTC

23<sup>rd</sup> April 2009

#### STM VIBRATION TEST CONCLUSIONS



The test is considered successfully performed and the specimen verified for dynamic environment because:

- Excitation levels measured and recorded by pilot accelerometers are in agreement with the specified ones according to defined control strategy
- Response signals have been properly acquired and recorded allowing later treatment
- No structural anomaly occurs during testing
- After fully visual and electrical inspection, no damage is observed
   No significant drift in frequencies is detected between low level results

Test results have been compared with mechanical analysis anticipated results. So the STM FEM model analysis is validated.



#### **PFM TEST CAMPAIGN**



# A new light is so 5 ERATUAL DE CIENCIAS DE PROGRAMAS ESPACIALES Y CIENCIAS DE LES DE CIENCIAS DE CIENCIAS DE LES DE CIENCIAS DE CIENCI



2009 CUBESAT DEVELOPERS WORKSHOP

23rd APRIL 2008

INTA