

Progress in Development and Implementation of a Spacecraft Radio Identification Tag System

(The SRI-Tag Transponder for CubeSats)

More about CubeSat RFID

Michael Cousins SRI International 2009 CubeSat Developer's Workshop San Luis Obispo, California

April 23, 2009

CubeSat RFID – Introduction

- Previously (2008) described the mis-identification or crosstagging issue and the potential for a low-power RFID solution
- The problem persists and the solution described in concept remains applicable
- The path to use of custom CMOS RF circuits is difficult, an impediment to the rapid demonstration of the concept
- Alternative means exist to achieve low-power operation with an appropriate choice of commercial off-the-shelf parts
- Here will review the basics of problem and concept, describe the design of the spacecraft radio identification tag (SRI-Tag) system as developed to this time
- A discussion of engineering issues arising in this design may resonate with small spacecraft developers in a general sense
- Development of the SRI-Tag has been IR&D funded so far
- Wish to encourage interested parties to adopt the technology when fully developed and attract the attention of possible sponsors

CubeSat RFID – Outline of General Points

- Review of the crosstagging problem
- The proposed solution transponder with interrogating fence: SRI-Tag system
- Concept of Operations
- System blocks and functions
- Space segment requirements / interfaces
- Ground segment requirements
- Antennas choices, characteristics, tradeoffs
- Receiver, Transmitter and Microcontroller
- Power system issues
- Development status
- Other functions beyond identification
- Demonstration, test and implementation thoughts

CubeSat RFID – The Problem Illustrated Crosstagging on Launch 2008-021

Launch from India on Day 119 of 2008

	Time														
Object	120.2	120.8	121.2	121.8	122	126.1	127.1	128.1	129.1	130.1	131.1	132.1	142.2	146.2	148.2
8021															
A	U	U	CARTO												
В	U	U	U	CANX6											
С	U	U	U	CUTE	CUTE	CUTE	CUTE	CANX2	CANX2	CANX2	CANX2	CANX2	CANX2	CUTE	CUTE
D	U	U	U	IMS1											
E	U	U	DELFI	CANX2	CANX2	CANX2	CANX2	COMPA							
F	U	U	AAUSA	U	AAUSA										
G	U	U	U	SEEDS	SEEDS	SEEDS	SEEDS	DELFI							
Н	U	U	U	U	U	DELFI	DELFI	CUTE	CUTE	U	U	U	U	U	CANX2
J	U	U	COMPA	COMPA	COMPA	COMPA	COMPA	SEEDS							
K	М	U	RUBIN												
L	М									CUTE	CUTE	CUTE	CUTE	CANX2	DEB

Note the shuffling of Object Identifiers vs Names (color coded) over time

Confusion about identity yields increased mission RISK

A future proliferation of CubeSats will multiply crosstagging problems & risks

4

CubeSat RFID – Solution: Transponder system with interrogating fence

Azimuth orientation and geographic siting optimized for specific satellite orbits

© 2009 SRI International

CubeSat RFID – Concept of Operations

- Send pulsed ? messages to an expected spacecraft as it transits a zone defined by a thin fan beam, very strong signal not easily confused with noise
- Transponder on spacecraft responds when addressed by ? message and thus identifies the time of passage
- Comparison with ephemeris predicted times of passage for expected objects establishes the identity
- Early ephemeris could be poor but possibly refined with transit time data
- Subsequent passes thru beam confirm identity with tracked object ephemeris

CubeSat RFID – System design specifics

- Pulsed transponder system 900 MHz ISM band
- ? Message is FSK modulated pulse
- Transponder detects ? pulse, receives message, decodes & responds
 - Sampled receiver operation to save power
- ? Signal is 8 msec pulse, 22 msec IPP, followed by 4 msec response
 - >2400 Km maximum unambiguous range

CubeSat RFID – Transponder design objectives

- Easily fit in Cubesat structure
- Operate autonomously with small self-contained primary battery
- Use spacecraft power (sparingly) if available
- Receive and recognize ? pulses, reject others, decode while minimizing power
- Send powerful response signal back to ground system, ¹/₂-watt, 4 msec
- Operate for at least 30-days even on a dead spacecraft
- Provide means for auxiliary commanding, messages and beaconing
- Use a simple antenna requiring minimal space

CubeSat RFID – Ground Segment

- Xmit/Rcv circular polarization due to unknowable spacecraft orientation
- Generate fan-beam of pulsed transmissions, approx 1/2-deg x 120-deg pattern
 - Linear broadside array, distributed transmitter
- Coincident received beam, low-noise figure, high sensitivity
 - LNA per element for maximum sensitivity, a la incoherent scatter radar
- Link calculations with linear array antenna, gain of 26.2 dB suggest
 - Uplink can have power of order 1Kw total
 - Downlink is limiting factor
 - Doppler + Oscillator uncertainties + modulation < sensible bandwidth</p>
 - May need to segment receive array to have greater gain in 2-4 parts
- Design details TBD when transponder complete and funding available
- Experimental license application in process to demonstrate system

CubeSat RFID – Antennas choices, characteristics, tradeoffs

- SRI-Tag an auxiliary instrument, antenna must be minimal but external and meet CubeSat launcher standards
- $\lambda/4$ whip, patch and commercial dielectrically loaded stub antennas investigated
- Practical choice is whip due to space required, performance and mounting simplicity, patch antennas large for 900 MHz band
- Antenna range tests whip vs stub show effects of spacecraft body as expected
- Whip much longer than stub, broader VSWR minimum, more gain
- Design feasible with whip, may be separate from electronics part to facilitate mounting choices
 - MMCX connector on cable
- Details TBD, springs, popup, no loose parts

CubeSat RFID – Receiver, Transmitter & Microcontroller

- Receiver IC chosen from available ISM band parts providing high sensitivity, lowest possible power, rapid start-up, FSK de-modulation capability, RSSI function, SPI bus communication
 - Since the receiver must be used to detect the presence of ? pulses the reduction of steady power drain is important
- Transmitter IC chosen for compatible operation with receiver and microcontroller, FSK modulation, minimum standby power, good efficiency
 - 1/2w output requirement needs added power amplifier using standard IC amplifiers
 - Operation is infrequent and short, requires energy storage to supply load
- Microcontroller chosen for low power and small size with minimal pinout configuration giving just enough functionality for the job
 - Low speed to save power (80 KHz, 13μ A)
 - Easy programming in-circuit, on-board EEPROM

Parts are: Silicon Laboratories SI4222, SI4322, C8051F332

CubeSat RFID – Power System Issues

- Minimization of steady loads, no large peak loads,
 - N-size Li-ion battery, Tadiran TL-5902 3.6v 1200 ma-Hr, 0.57" dia x 0.99", 9.2gm
- Reduction of receiver load by sampled signal measurement to detect ? pulses
- RF ¹/₂-w PA requires 5v pulsed power hence
 - DC-DC converter to charge 5v ultracapacitor for transmitter responses
- Accumulated effect of leakage and quiescent currents
- Overall dominated by receiver because of continuous operation
- Power budget (after deployment):
 - Receiver loads, avg 434 µA [85.4%]

 - Microcontroller, avg 30 µA [5.9%]
 - T/R switch 8 µA [1.6%]
- Expected battery life @ 60% utilization: 59 days

CubeSat RFID – Timing of Loads for Detection & Response

DETECTING THE ? PULSE -- RECEIVER AVERAGE CURRENT 434uA

RF PA AVG 35 uA INCLUDING LEAKAGE

CubeSat RFID – Development, the SRI-Tag test bed

- Transponder block diagram circuits fabricated in more accessible form
 - A test bed or breadboard
- Breakouts for most signals from microcontroller to other parts provided
- Programming connections identical to evaluation boards
- Xmtr and microcontroller evaluation boards assemble test ground segment
- Microcontroller programming underway
 - First establish pinout significance of μC
 - Provide SPI bus communication code
 - Receiver and Transmitter initialization
 - Interrogation pulse recognition code via DRRSI read against threshold
 - Data handling through FIFO buffer in receiver, process
- Expect to test individual parts of code using test bed, then assemble fully
- So far a few changes needed in design have been identified
- Shortcomings in documentation an issue

CubeSat RFID – SRI-Tag testbed 2

Test circuitboard 3.0" x 4.5", reported largest available underutilized volume in Pumpkin kit is 2.83" x 0.59" x 0.9"

CubeSat RFID – Other Functions beyond Identification

- SRI-Tag design envisions ancillary uses when ID function achieved
 With s/c bus power available may operate as a beacon or minimal data link
- Back door command receiver, useful for Reset of hardware
- Some already planning supplemental tracking use of beacon
 - Use external 10 MHz high stability standard to implement accurate doppler tracking
- Uncertainty about on-orbit radio noise in ISM band could use Tag to log signal level measurements while searching
 - dump data via beacon to SRI ground station

CubeSat RFID – Demonstration, Test and Implementation

- Bench testing of Tag test bed, completion of design modifications
- Fabrication of prototype flight instrument
- Bench testing with mockup of ground equipment
- Vibration, thermal and thermal-vacuum testing of module
- Fabrication of partial ground segment
- High altitude balloon flight test(s) SRI-Tag
- Initial application on CubeSat TBD

CubeSat RFID – Summary / Conclusions

- Crosstagging of CubeSat spacecraft a continuing problem that will grow with the number of objects deployed and launch opportunities
- The SRI-Tag system described can help with this and other matters of concern to small satellite developers
- An alternative to custom CMOS circuits for an ultra-low power spacecraft radio identification transponder is nearing completion of prototype development
- Several further steps required before demonstration beyond bench testing
 - Revision of test bed, design changes to accommodate size issues
 - PCB layout and mechanical design, flight prototype fabrication
- Method available for realistic system testing before actual spacecraft flight
- Interest present for application both for the prime RFID mission as well as ancillary uses

