

CubeSat-Scale Hyperspectral Imager for Middle Atmosphere Investigations

Rick Doe¹, Steve Watchorn², John Noto², Robert Kerr², Karl van Dyk¹, Kyle Leveque¹, and Christopher Sioris³

¹ SRI International
² Scientific Solutions, Inc.
³ Environment Canada

Scientific Solutions, Inc. Spectroscopic Devices & Consulting

2009 CUBESAT DEVELOPER'S CONFERENCE, SAN LUIS OBISPO, CA

The Earth's Atmosphere

Characteristics of the Middle Atmosphere

- Coldest temperatures on Earth
- Convectively unstable
- Breaking gravity waves drive planetary wind circulation
- Competition between eddy and molecular diffusion
- Meteoric deposition of trace metals (Na, Fe, K)
- Inaccessible to satellites and balloons

Coldest Temperature in the Atmosphere

Mesospheric Temperature Minimum is Controlled by CO₂ IR Radiation

Mesopause Temperature Minimum is a Harbinger of Climate Change

Gravity Waves in the Middle Atmosphere

- Middle atmosphere gravity waves couple energy and momentum fluxes from the troposphere to the thermosphere
- GW climatology helps improves our understanding of mean wind flow and tides, turbulence, heat and chemical transport, and higher altitude gravity waves (100–500 km)

OH, Atomic Metals (Na & K), O, and O₂

Spectral Signatures are Sensitive to Mesopause Temperature

Sodium (80 - 105 km)

Molecular Oxygen (97 km)

- Imagers (limited spectral information)
- Traditional Slit Grating Spectrograph (large)
- Interferometer (luminosity advantage)

Classic Michelson Interferometer

- Peaks and Nulls in Fringe Pattern Probed by Moving Mirror
- Recovered Spectra is Fourier Transform of Fringe Pattern
- Moving Parts !

SHS Interferometer - No Scanning Required

- Tilted gratings replace mirrors to provide crossed wavefronts at exit aperture
- Wedge angle, grating density, and optical path adjusted to tune SHS to desired wavelength, resolution, and coverage
- Fringe pattern (Fourier Transform of Spectra) acquired without scanning
- Robust design

Spatial Heterodyne Spectrometer (SHS)

- Monolithic design can be locked down with no alignment issues or moving parts
- Fused silica design first created for space-based limb imaging of OH by NASA, U Wisconsin, and NRL
- SHS Instrument Operating on STPSat-1 since March 2007

In Hand Na-Optimized SHS Monolith

Notional CubeSat HSI (CHSI) Layout

CubeSat HSI Orientation

Ideal SHS Fringe Pattern for Imaging Spectroscopy

Spatial Dimension

Spectral Dimension

Prototype Sodium CHSI Field Test

Raw Fringe Pattern from Prototype of Sodium CHSI

Recovered Na Spectra from CHSI Prototype

CubeSat-Optimized Na Monolith Design

CubeSat-Optimized Monolith Mass Model

Front Optic Selection

- 50 mm FL for 10° spatial field of view on grating
- Low-distortion Leica rangefinder lens
- 28 mm back focus distance sufficient to illuminate grating

Spatial Coverage

Starlight Xpress Lodestar CCD Camera

- Astronomy grade 752 X 580 pixel Sony ICX429AL CCD
- Low noise, 16-bit dynamic range, 10 Hz max sampling
- On-chip binning to enhance SNR and minimize telemetry
- Extensive Linux libraries for image processing

CCD Camera Performance

Dark Noise, 50° C 1 s Integration Read Noise, 50° C 1 ms Integration

Reimaging Optics Selection

- Transfers SHS fringe pattern to CCD focal plane
- Large aperture (F/1.4) to maximize sensitivity
- Close-up diopter added to decrease standoff distance
- Bolex 36-mm macro lens with +10 diopter adapter

Payload Miniaturization for 1.5 U Form Factor

Miniaturized with

- Folding mirrors
- Folded electronics
- Repackaged lens

1.5 U CHSI Payload Model

Flight Processing Goals

- Optimize spectral and spatial binning for best science at acceptable telemetry and power loads
- Investigate on-orbit photometric correction (flat fields, dewarping)
- Perform on-orbit FFTs to extract band feature intensity
- Analyze recovered bands to extract temperature

Temperature Extraction from O₂ Spectra

CHSI Requires Nadir Orientation with CCD Spatial Axis Perpendicular to Ram Direction

- Design Integrated Cruciform
- Optimize foreoptic mechanical support
- Assess processing power associated with image manipulation
- Build vibration and thermal test unit