2009 CUBESAT DEVELOPER'S CONFERENCE, SAN LUIS OBISPO, CA

Miniaturized Vacuum Ultraviolet Photometer

John Noto¹, Rick Doe², Geoff Crowley³, Robert Kerr¹ Karl van Dyk², Kyle Leveque²

¹ Scientific Solutions, Inc.
² SRI International
³ Atmospheric and Space Technology Research Associates

Scientific Solutions, Inc. Spectroscopic Devices & Consulting

Some Space Weather Goals

- Predict Behavior of the Geospace Environment
- Understand Nature of Solar-Induced Perturbations
- Minimize Risk of Comm/Navigation System Failure
- Protect Humans in Orbit

Comm/Nav System Performance Limited by Ionospheric Variability

What is the Vertical Structure of the lonosphere?

- Layers discovered by RF techniques
- E-region (O2+ and NO+)
 - Produced by solar X-rays and hard auroral bombardment (high latitude)
 - Lost by fast chemical destruction
- F-region (O+)
 - Produced by solar photoionization and soft auroral bombardment
 - Lost by slow chemical recombination

First-principle Models of the lonosphere Can Reproduce Only the Largest-scale Average Features

90.0

45.0

0.0

-525

Assimilative Models Can Reproduce Fine Structure but Are Typically Data-Starved

A Small Fleet of Ionospheric Specification Probes Can Significantly Improve Regional Model Convergence

How to Measure Ionospheric Density?

Ground-based

• Incoherent Scatter Radar (expensive)

Ground- or Space-based

- Total Reflection Sounders (partial profile only)
- Faraday Rotation Polarimeters (e.g. beacons)
- Two-Frequency Propagation Delay Receivers (e.g., GPS)

Space-based

• Monochromatic Imagers and Photometers

Which Method is Best for CubeSats?

- Beacon and GPS receivers are bistatic and require arrays of ground-based TX or RX nodes, or favorable satellite occultation geometries, respectively.
- UV Photometers measure airglow from naturally occurring ionospheric recombination without need for special geometries.

How does a UV Photometer Gauge Ionospheric Density?

- Atomic Oxygen ions constitute the primary ionospheric species in the F-region
- In the nighttime F-region ionosphere, 135.6 nm photons are emitted spontaneously from the recombination of atomic oxygen ions,

 $O+ + e- \rightarrow O(5P) + hv_{135.6}$

• O+ and e- are in equal number and 135.6 nm emission is proportional to the path integral of [O+] squared

Flight Heritage: NRL 135.6 nm "Tiny" Ionospheric Photometer System (TIPS) on COSMIC Satellite

3000 cm³ and 7.6 W Orbit Average

Challenges in Evolving TIPS into CubeSat TIP (CTIP)

- Thermal Management
 - How to heat the required SrF₂ blocking filter to 100° C in a CubeSat with 2 – 3 W maximum payload power?

Optical Efficiency

- How to mimic the TIPS mirror in a 1.5U form factor?

• Miniaturization

- How to shrink the electronics functions?

• EMI

– How to overcome potential noise between the –1 kV switching power supply and the high-gain PMT preamplifier?

Prototype CTIP Optical Elements

Figure 3 UV Optical Chain

CTIP Attached All Optics and Electronics on a Common PCB

Prototype CTIP Motherboard

CTIP Motherboard Prototype Electronics

Optical Ray Trace Model: Mirror and PMT

Optical Ray Trace Model: Scattered Light and Baffle

Heated SrF₂ Filter Holder Design

Heated SrF₂ Filter Holder Prototype

Off-Axis Parabolic Mirror Fabrication Steps

Hollow Mirror to Reduce Mass and to Liberate PCB Real Estate

Functional Test Sequence

NO.	DESCRIPTION	REQUIRED ELEMENTS
1	Initial Thermal Function	Complete
2	Initial Red-Leak	Complete
3	Mirror Distortion Test	Complete
4	Thermal Prototype Validation	Complete
5	PMT & Solenoid Function	Complete
6	Red-Leak Function	Complete
7	UV Detection @ 123.5 nm	Complete
8	Sun Detector Function	Daughterboard Design & Fab
9	UV & Red-Leak Calibration	Multiple PMTs, Vis Standard Source, and VUV monochromator
10	Full Photometric Calibration	UV Block Filter, Flight Baffle, and VUV monochromator

Prototype Performance

Parameter	CTIP	TIPS
Sensitivity	> 500 counts/R-s	> 500 counts/R-s
Field of View	3.8°	3.8°
Average Power	2.3 W	7.6 W
Shutter In-rush	2.6 W ¹	NA
HV In-rush	6.4 W ²	NA
Volume	1500 cm ³	3000 cm ³
Weight	< 800 g	2300 g

1 100 ms pulse

2 300 ms pulse

Future Testing Goals

- Vibration and shock
- EMI per Mil-STD 461
- LEO proton lifetime exposure
- Full VUV calibration

Concept of Operations

- Nadir Oriented Mission
- Orbit Plane Spinner