

CINEMA

CubeSat for Ions, Neutrals, Electrons, MAgnetic fields

David Glaser Karla Vega

Space Sciences Laboratory Dept. of Mechanical Engineering University of California, Berkeley

Overview

- Collaborating Institutions
- Mission Highlights
- Science Summary
- CINEMA Spacecraft System Design
 - Communication
 - Mechanical/Bus
 - Science Instruments (2)
 - ACS
- Mission Plan
- Final Thoughts

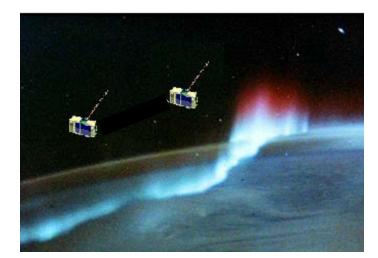
Collaborating Institutions

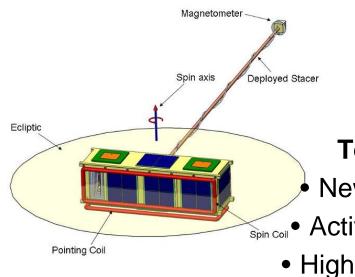
- UC Berkeley/SSL (Lead Institution)
 - A World Leader in Space Weather Research
 - Developing Compact Suprathermal Particle Instruments
 - Experienced in Spinning Spacecraft ACS
 - Formal (NASA) and "Informal" (Sounding Rockets) Flight Experience

• Imperial College London, Space Magnetometer Laboratory

- Fluxgate Magnetometers on Cassini, Cluster
- Developing Small, Low-mass Magnetometers for CubeSats

NASA Ames


- Cubesat Experience (GeneSat, PharmaSat, O/OREOs)
- Possible Contribution of GeneSat Avionics
- Kyung Hee University (S. Korea)
 - <u>World Class University</u> project
 - Space Weather Research

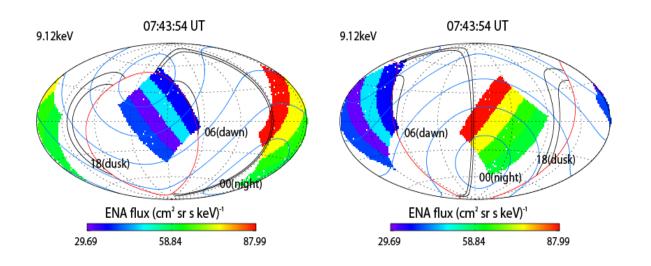


Mission Highlights

- 3U CubeSat (2008-9 NSF Proposal)
- 1 Additional CubeSat (Kyung Hee U.)
- Balance of Heritage and Innovation
- Mix of Student and Professional Labor
- Purpose: Space Weather Research •SupraThermal Particle Detector Boom-mounted 3-Axis Magnetometer
- Spinning Ecliptic-Normal Attitude
- High Inclination Orbit
- ~1 Year Mission Duration

Technological Impacts

- New Sensors and Spacecraft Systems
- Spin Coil Active ACS
 - High Data Throughput (~900 Mbit/day)

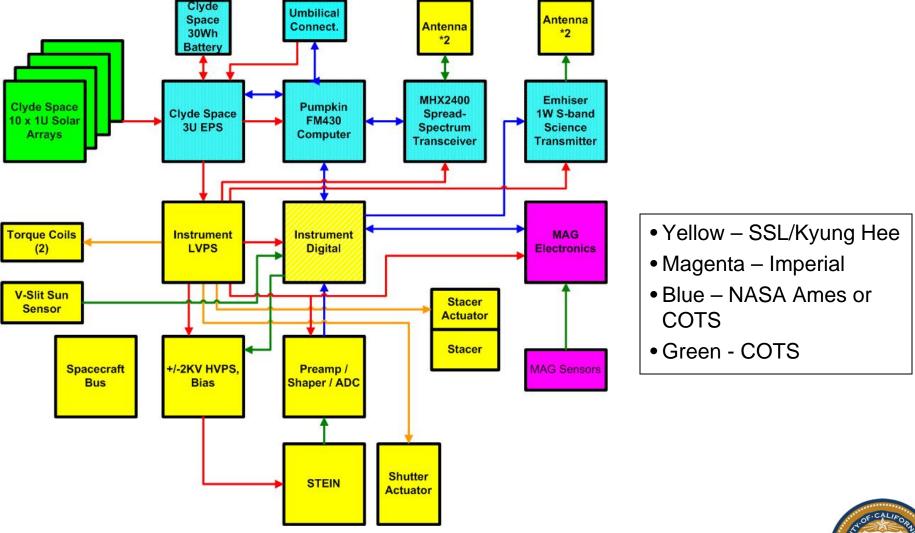

4

CINEMA Science

- Magnetic Storms and Ring Current
 - Image ring current particles in local time
 - Observation of approximately equatorial ring current fluxes
- High Latitude Charged Particle Precipitation
 - Will measure ~4-100 KeV ion precipitation in-situ and remotely sense ion precipitation with Energetic Neutral Atoms (ENAs)

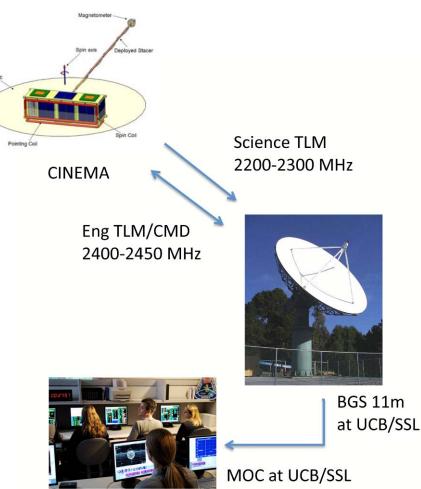
ENA map from STE instrument on STEREO

CINEMA Science

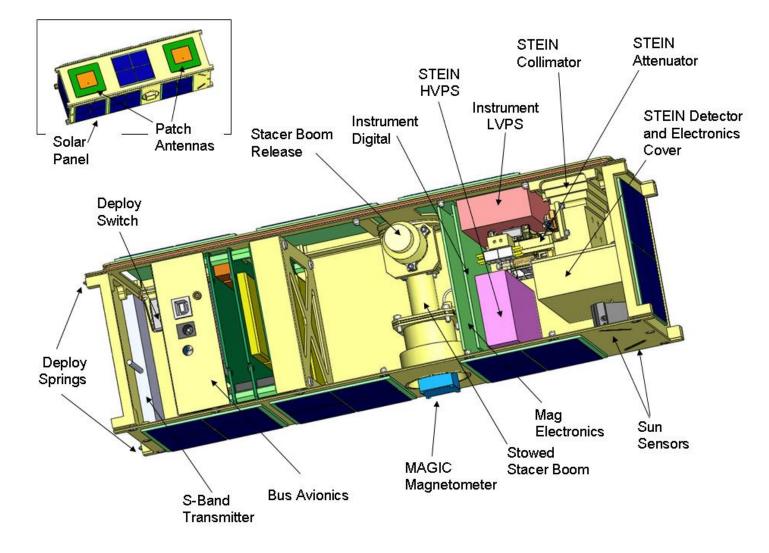


- •Electron Microbursts (0.10 0.25 sec)
 - Measure precipitated electrons and ions with a single detector
 - Used to study microbursts, pulsations and other precipitation structures
- •Magnetic Field
 - For interpreting particle detector measurements
 - Waves and Currents
 - Track Phase Fronts of
 - -Ultra-low Frequency waves (0.1 Hz or lower)
 - –Flux Transfer Events (FTEs) quasi-periodic reconnection events at the Earth's magnetopause
- •Multi-Satellite Science
 - Multi-Point Measurements
 - Stereo Observations

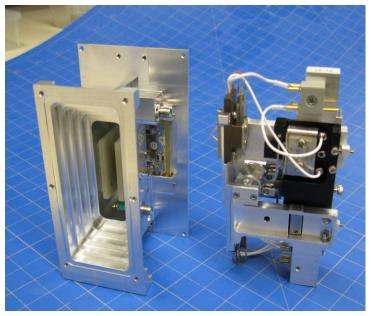
CINEMA Spacecraft Design

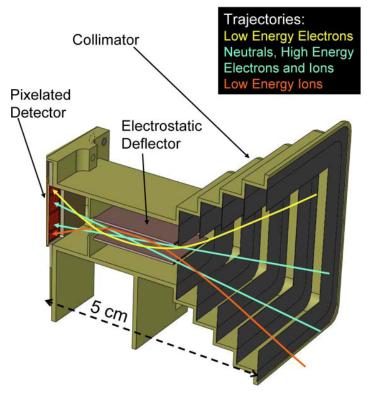

Sprg

- On board
 - µHard MHX2400
 - 3-dB power splitter
 - Four circular polarized patch antennas
 - Emhiser 1 W S-band transmitter
- Ground
 - 11-m Berkeley Ground Station
 - Secondary feed containing a short helix antenna and a uHard WiFi transceiver that is identical to the unit on the spacecraft



CINEMA Bus



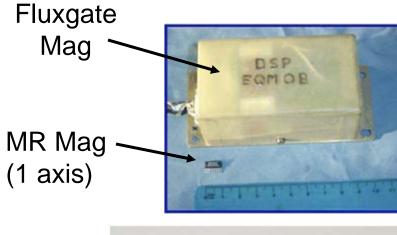


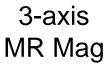
STEIN Instrument

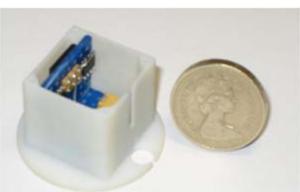
SupraThermal Electrons Ions & Neutrals

- Heritage: STEREO STE Sensor
- with Electrostatic Deflection
- Heritage: Mechanical Attenuator Reduces Particle Count by 10²
- Prototype Built and Being Tested

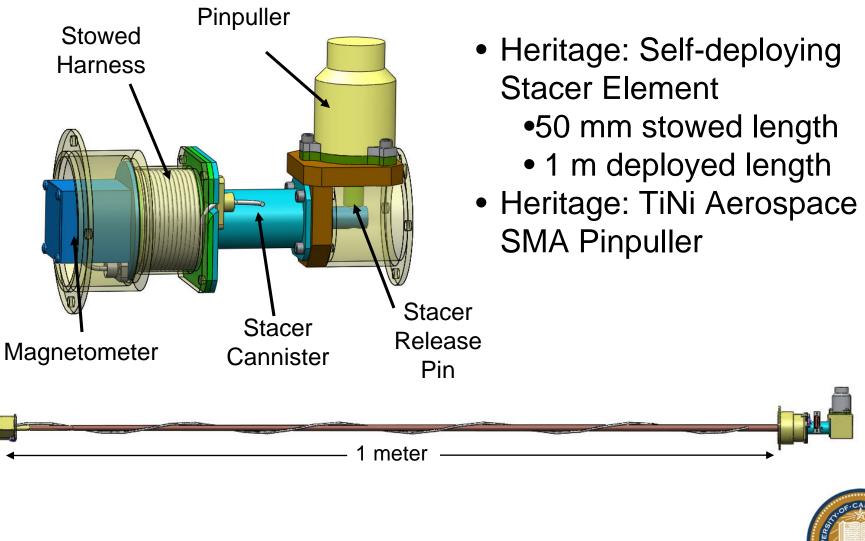
Resolution: ~1KeV FWHM Range: few to 100KeV






MAGIC Instrument

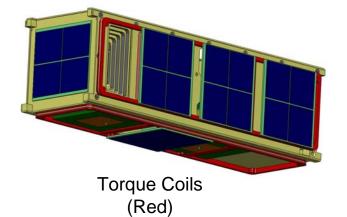
MAGnetometer from Imperial College

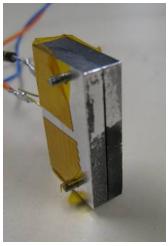

- Magnetoresistive Technology
- Inboard + Boom Deployed
 - Calibration
 - Spacecraft Induced Field Meas.
- Sensitivity 0.25nT
- Resolution
 - 2n-10nT Science Mode (200 mW)
 - 25nT ACS mode (~100 mW)

Mag Boom

- Requirements
 - Ecliptic normal spinner
 - Maintain spin axis in a 10° cone
 - Maintain a spin rate of 2 RPM
- ACS Initial Acquisition/Attitude Goals
 - Without ground intervention
 - Capable of detumble, spin-up and precession maneuvers after MAGIC calibration
 - Establishing the nominal spin rate from any orientation with tip-off rates not exceeding 5 deg/sec in the transverse

ACS Hardware

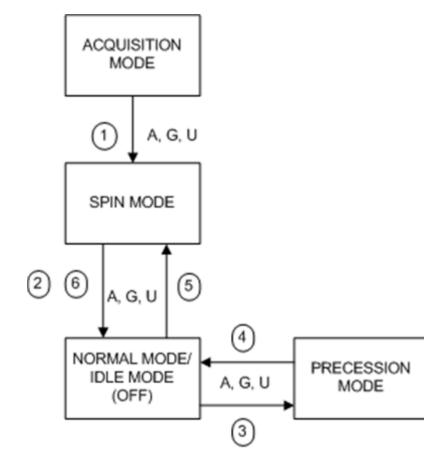



Actuators

- Torque coils:
 - 1.16 Am² (62 turns copper wire 26 AWG)
 - perpendicular (precession) and parallel (spin) to spin axis

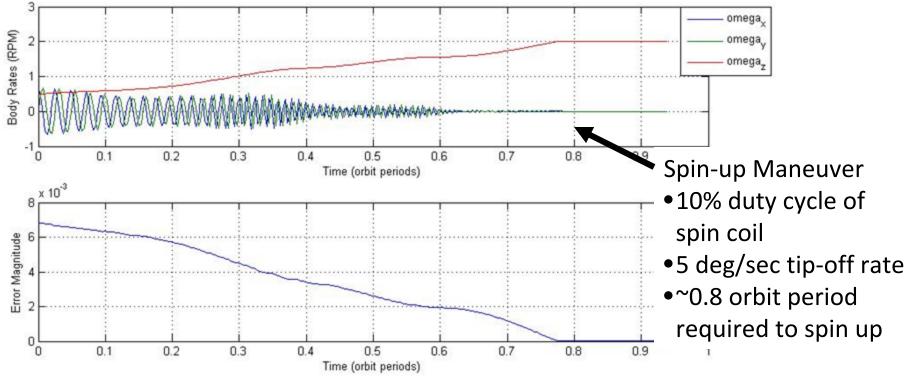
Sensors

- Sun sensors
 - V-slit sun sensor oriented looking out at the spin plane
 - 4° x 90° fan-shaped field of view (FOV)
 - Heritage from the UCB Rocket program
 - Solar panels
- Magnetometer
 - In-board and out-board



Sun sensor prototype 14

- A Autonomous
- G Ground
- U Unresolved Error (autonomous)
- (#) Sequence of events


- Initial Acquisition Mode
 - Detumble maneuver using B-dot Control
 - Initial attitude acquisition using solar panels
 - Initialize sun sensor by inducing spin
- Spin/Precession Mode
 - ACS initial phase
 - Ground Bias
 - Attitude Maintenance
- Nominal Mode
 - Idle Mode (OFF)

ACS Modeling Results

Other results

- ~ 5.5 orbit periods to preccess 90°
- ~ 3 orbit periods to detumble
- ~ 22 orbit periods to drift-off 10° cone
- 1.2 orbit periods to complete maintenance maneuver

•Launch and Early Operations

- -Launched in passive mode
- -MAG boom deployed after PPOD separation
- -Safe mode (power positive in any orientation) until communication with MOC
- -Initialization includes
 - •Entering ACS mode (STEIN is OFF)
 - •System Checkout
 - •MAG calibration using torque coils
- Normal Operations
 - -STEIN, MAG On and collecting data in high rate mode
 - -s/c contacted at least once per day

- CINEMA will perform important space weather research
- CINEMA uses a combination of flight heritage and innovation that balances risk and safety
- The CINEMA project emphasizes student labor with guidance by experienced engineers and scientists
- CINEMA will pave the way for Magnetospheric Constellations with many satellites making multi-point observations

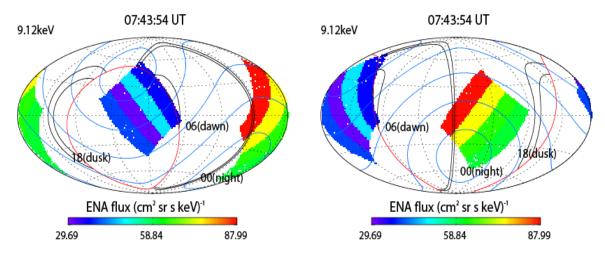
Visit us at: http://ssl.berkeley.edu

For more information: David Glaser – dglaser(at)ssl.berkeley.edu

Karla Vega – vega(at)ssl.berkeley.edu

Science Questions:

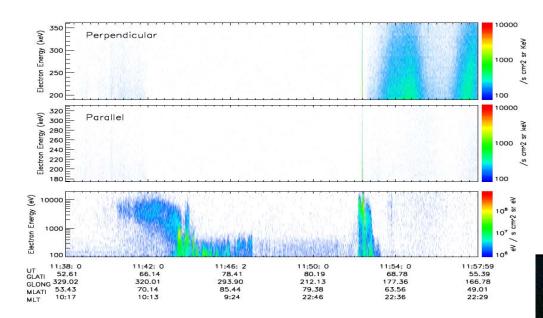
John Sample – jsample(at)ssl.berkeley.edu


Back-up slides

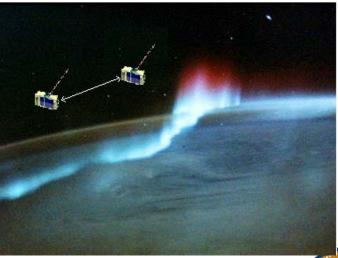
STE ENA Map

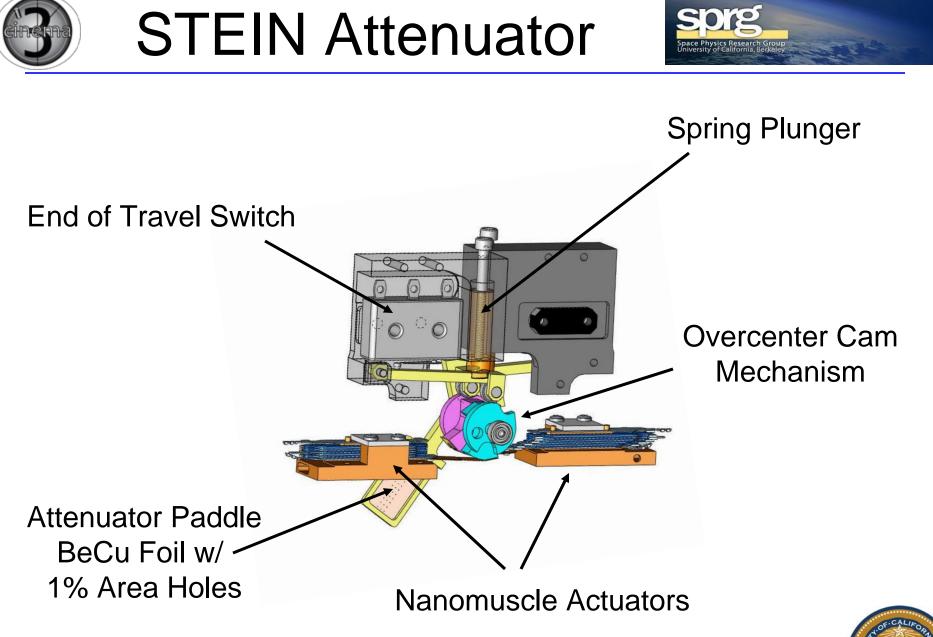
Angular distribution as a function of source direction centered at noon (left) and midnight (right) on Nov. 6, 2006. STE downstream sensors looked in the magnetotail direction close to midnight and detected larger fluxes than upstream sensors looking towards the Earth (the Earth's horizon is indicated by red curve). The blue curves show the iso-pitch-angle contours of the local magnetic field. The black curves show the magnetic field lines at dusk, midnight and dawn.

April 22, 2009


CubeSat Developer's Workshop 2009

1868


Multi-Satellite Science



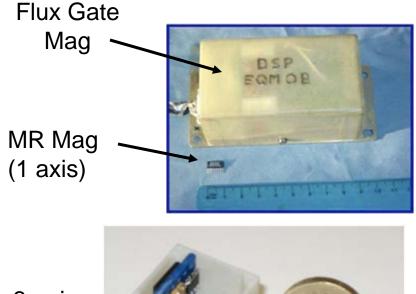
Spatial or Time Variation "Is it local acceleration?"

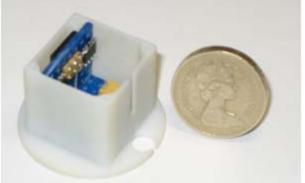
- Separation Speed: 1m/min 1 d: 1.4 km 10 d: 14 km 1 m: 42 km
 - 1y: 504 km

SSD Detector

- Low Capaciance
- •Thin Window Dead Layer
- •Passively Cooled
- •Pulse-Height Detection Electronics

- •Detector Area: 4 x 0.1 cm²
- •Electrons: ~2-40 keV
- •lons: ~4-40 keV
- •Neutrals: ~4-20 keV
- •Resolution: ~<1 keV FWHM




MAGIC Instrument

MAGnetometer from Imperial College

3-axis MR Mag

Credit: Imperial College London

- Measure vector DC field from 0-10Hz for both ACS and Science
- Two 3-axis sensors based on Anisotropic Magnetoresistance
- Mass: 20g and Volume: 15cm³
- Delivers ambient MAG fields, plus temperature
- Sensitivity $\leq 2nT$
- Resolution: <10nT science mode, 25nT ACS mode.
- Noise Spectral Density (NSD)
 ≤ 100pT/√Hz above 1Hz

Power Generation

1U solar array			
Size	0.00532	2*ATJ, m2	Emcore
Solar Visible	1353	W/m2	
Earth IR	237	W/m2	
Earth Albedo	406	W/m2	
Efficiency	27.5%	ATJ GaAs	Emcore
Power	1.78	W/1U	Sun only
	0.31	W/1U	Albedo only
	0.53	W/1U	IR Only
	2.63	W/1U	Sun, Albedo, & IR

Solar Array Power Trans Clyde Space 30	-	
BCF	R 90	%

Bus average power generation	
Assume Ecliptic Normal	l Spin, MAG boom deployed:
Side 1	1U Array
Side 2	3U Array
Side 3	1U Array
Side 4	1U + 2U array (one or the other shadowed by the boom)
Spin Avg Illuminated Arrays	2.07 ∪

Battery ch	harge/discharge	Efficiency 99% Lion
Orbit	Period	98.8 minutes
	Shadow	35.5 minutes Worst Case
	Albedo Illum	49.4 minutes (incl top/bottom arrays)
	IR Illum	98.8 minutes (incl top/bottom arrays)

Orbit Average Power Available (assume full load in shadow)

3.78 W

Worst Case Orientation	
1U towards the sun, no spin, 2U toward	ds the Earth
Orbit Average Power Available	
	2.51 W

Power Usage

CINEMA Power Usage Spreadsheet

MAG			IC, PDR IC, PDR		sample/sec, ~ I0 samples.se		
STEIN							
Analog	-	mW	McBride PDR				
HVPS, Bias	250	mW	Berg 5/21/2008	3			
Instrument Digita	al						
	100	mW	Based on STE	REO SWEA/	STE		
Sun Sensors							
	20	mW	Diode, campar	ator, FPGA t	iming		
Instrument Powe							
	345.86	mW	70%	Efficiency			
Inst Total	1152.86	mW	(MAG low pow	er mode)			
Bus Power (excl	uding COM,	Battery cha	arging, Torqui	ng)			
C&DH	20	mW	FM430				
EPS	100	mW	ClydeSpace				
Bus Total	120	mW					
Torque Rods	8,000	mW	each				
Modes:		SAE	EMODE	204	Mode	Norm	al Mode
moues.	Base, mW	Duty	Power, mW	Duty	Power, mW		Power, mW
SAFE			/				
Bus	120	100.0%	120	100.0%	120	100.0%	120
COM Rx	1,167	100.0%	1167	3.4%	40	3.4%	
COM Tx	1,889	0.0%	0	0.6%	12	0.6%	12
Science Tx	9,750	0.0%	0	0.0%	0	2.8%	273
Instrument, LR	796	0.0%	0	100.0%			
Instrument, HR	1,653		0	0.0%	0	100.0%	1,653
ACS	8,000	0.0%	0	10.0%	800	0.0%	0
		Total:	1,287		1,768		2,097
		Margin	49%		30%		44%
		Available	2,513		2,513		3,776

MHX2400	Transciever		Power
	Rx mode	210 mA	1.68 W
	Tx mode	550 mA	4.4 W
Emhiser E	DTC01-DEA	1W Transmitter	
		650 mA	9.75 W
4.43	Passes a day		
7	minutes/pass		
2	minutes/pass n	nargin	
98.8	minutes/orbit		
99%	Battery charge/	discharge efficiency	/
100%	Antenna view fa	actor (transmitter on	through antenna switchover)

Mass Budget

Subsystem/Part	Mass (g)
Chassis	463
Solar Arrays	375
MAG Boom System	160
Sun Sensors	10
Antennas	140
Genesat Avionics	950
COTS Avionics	500
Transmitter	57
Torque Coils	85
STEIN Detector Head	261
STEIN Electronics	90
STEIN HVPS	150
MAG Electronics	45
Instrument Digital	90
Instrument LVPS	150
Harnessing	60
Thermal	50
Total	2730/3180 g

