
Hermes CubeSat:

Testing the Viability of High Speed Communications on a Picosatellite

Space Grant: The '90s and Early 2000s

3 Satellite Missions 3 Corner Satellite (3CS): Launched on December 21, 2004

- Constellation of three nanosatellites
 - Completed satellites delivered to Air Force Research Lab
 - Stereographic Imaging of Cloud Formations
- Joint student project with New Mexico State & Arizona State University

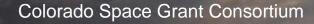
- Students from six Colorado

Launched 08-07-97. STS-85 Space Shuttle, Hitchhiker Payload Technology Demonstrations

Launched 11-03-94, STS-66

- Students from UC Boulder

Citizen Explorer Satellite (CX) - In COSGC Clean Room


- Science/Education Mission
- Real-world engineering and science challenges.
 - UV Measurements / Total Column Ozone
 - Engage K-12 students in mission.

Deployment and Intelligent Nanosatellite Operations (DINO) – In Clean Room

- Determine cloud heights from space
- Evaluate the performance of intelligent operations
- Assess deployment technologies for nanosatellites from industry
- Onboard evaluation of science and engineering data

Within the Last Two Years

3 Developing Satellite Missions		3 RocketSat Payloads	
	DANDE - <u>Nanosatellite</u> - Upper atmosphere drag composition and wind measurements -Helping to enhance and develop new atmospheric models -Proving low cost space weather observing techniques		RocketSat I: - Launched 09-29-06 - Proof of concept - Environmental Sensors RocketSat II:
	->50kg satellite Hermes - <u>CubeSat</u> - High speed communications testing for CubeSats	ROCKI	error zz -Launched 04-28-07 -Proof of concept for workshop -Video camera RocketSat III:
	-Progression toward generic bus -Environmental characterization -Staffing of the Missions Operation Center	ROCK	-Launched 06-03-07 -Environmental Sensors
	<u>Testhed</u> for <u>R</u> esponsive <u>Experiments And Demonstrations in Space</u> (TREADS) -'full-service' technology demonstration and science gathering platform -Connects to ride share adapter - >50kg satellite		3 Upcoming Launches HASP: -Scheduled to launch in August '08 -High altitude observatory proof of concept
			RocketSat IV: -Scheduled to launch in June '08 -High altitude gas and density measurement with NOAA RocketSat Workshop:

Colorado Space Grant Consortium

-RocketSat for everyone

'08

Team Organization

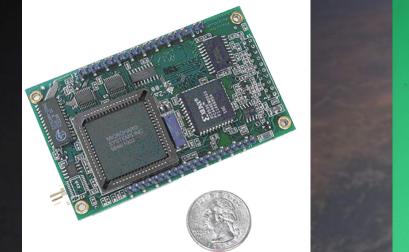
- Completely student-led & student-run project
 - Mostly undergraduates
 - Budgets, management and systems engineering by students
 - Subsystem design, fabrication and testing by students
- 13 students on project currently

 61 have been involved
 in the project

COSGC

Hermes Mission Objectives

- 1. Create modular and extensible subsystems
- 2. Utilize S-band frequency to communicate at data rates higher than those obtainable with Ultra-High Frequencies (UHF)
- 3. Characterize Hermes' orbital environment and satellite status to validate models and design


Hermes Cubesat Bus

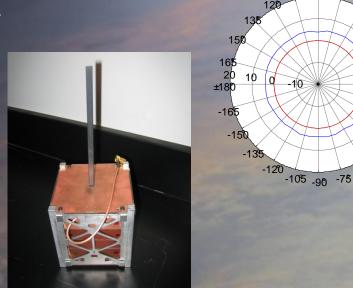
- Command and Data Handling
- Primary (UHF) Communications System
- High Speed (S-Band) Communications System
- Electrical Power System
- System Structure

Payload: High Speed Communications

- Testing Feasibility of High Data Throughput Communications on the COSGC Cubesat Bus
- Utilizes the Microhard MHX-2400 S-Band Modem
- Capable of Data Rates up to 50 kbaud

Primary Communications

- Half Duplex Communications in UHF Range
- Uses a Yaesu VX-3R COTS Radio
- In-House Designed TNC
 - Built around the ATMega 168 MCU
 - MX604 for D/A Conversion
 - Data rate of 1200 baud


28 April 2009

Communications Antennas

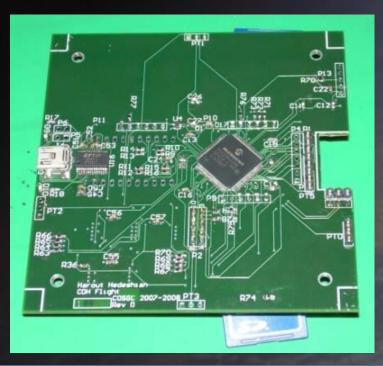
Tuned at FIRST RF Corporation in Boulder, CO

- HSCOM Monopole Antenna
 - Tuned to 2.4 GHz range

- PCOM Monopole Antenna
 - Tuned to 437.425 MHz

 Both antennas constructed of spring steel with a Kynar cover

15


o

-15

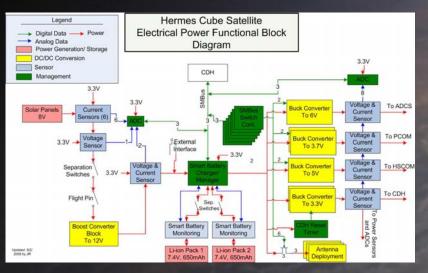
-60

Command and Data Handling

- Based around Microchip PIC24H MPU
- Utilizes Pumpkin Salvo RTOS

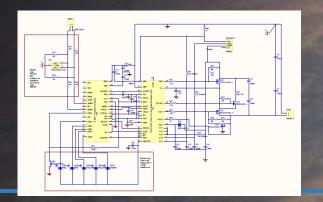
Command and Data Handling

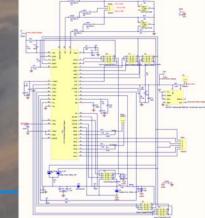
• Features


- Triple Redundancy on Critical Components
 - Three SD cards for data integrity
 - Three RTCs for accurate timing
- Ability to Reprogram All Satellite Software
 - Two stage bootloader
 - First stage checks second stage and main code section
 - Second stage checks first stage
 - Main code checks communications system

- Designed for High Efficiency and Extensibility
- Completely Autonomous Base Operation
 - Does not depend on CDH for charging/power
- Completely Student Designed, Built, and Tested

- Interface
 - I²C Communication with CDH
 - Full Array of Sensors for All System Voltages and Currents



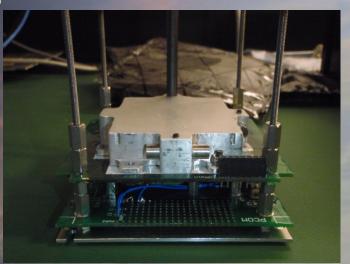


- Battery Charging
 - Li-Ion / Li-Poly Battery Support
 - Automatic Cell Balancing

- Ability to Charge/Discharge Both Batteries at Once
- Fully Autonomous Protection Circuitry
- Automatic Time-to-Empty Calculation at Current or Hypothetical Load

Colorado Space Grant Consortium

- Power Regulation and Distribution
 - 3.3 V, 5 V, and 7.4 V Outputs to Subsystems
 - Less than 5% Ripple on All Outputs
 - All Regulation Performed with Switching Converters
 - Can Enable or Disable All Outputs Other than 3.3 V for CDH
 - Redundancy on Critical Converters



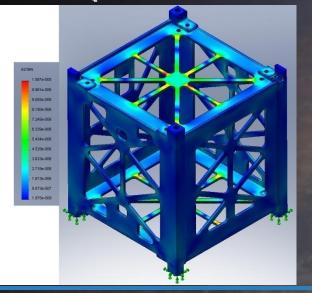
ADCS

Passive Magnetic Control

- AlNiCo Cast-5 magnet aligned with antenna axis
- 0.005 Amp/m²
- 1 in. x 3/16 in.
- High strength, low mass

Damping

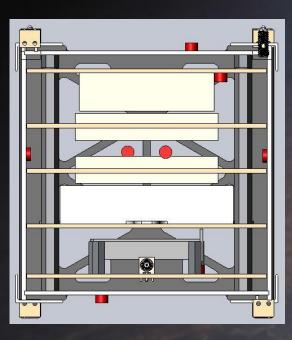
- Ferrous material for magnetic hysteresis
 - Ni80/Fe15.5/Mo4.5 used on previous missions



COSGC

System Structure

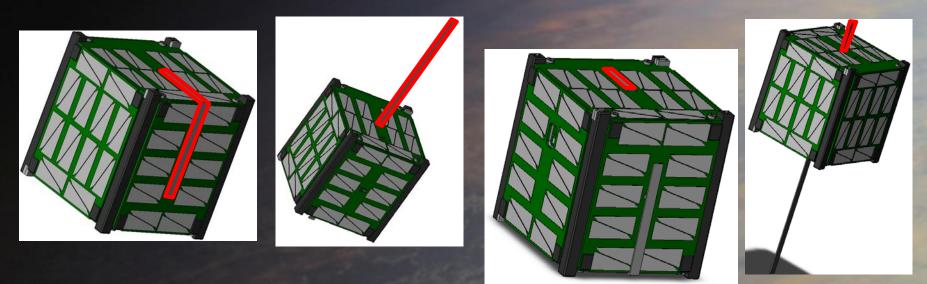
- Aluminum 6061 Exoskeleton Designed and Manufactured In-House
- 6 Solar Panels Restrained on Exterior with Solar Panel Clips



28 April 2009

System Structure

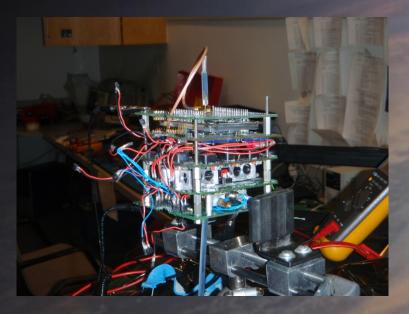
- 5 PCB Internal Stack Configuration
- Aluminum 6061 Battery Box



System Structure

Deployment Systems

- 40AWG Nichrome Burn Wire
- Dacron Restraints Looped Through Aluminum Structure



Integration

- Wiring Harness and Stacking Headers
 - Fully Functional Systems Interface
- Class 10,000 Clean Room

Testing

- Long Range Communication Testing
- Deployment Testing in Vacuum Chamber
- Environmental Testing
 - Vibration Testing at Lockheed Martin Company
 - Thermal Vacuum Testing at SpaceDev (Sierra Nevada Corporation)
- Day in the Life

Lessons Learned

- Stack Integration
 - Limit Wire Connections
 - Emphasize Stacking Headers
- HSCOM/Structure Interference Issues
- Clearly Defined Requirements Early in Development
- Configuration Management
- Team Turnover

