

Presentation of the Xatcobeo project XAT-10000-PRE-012-UVIGO.INTA 24.04.09 www.xatcobeo.com

Fernando Aguado

faguado@xatcobeo.com Principal investigator University of Vigo

Jorge Iglesias jiglesias@xatcobeo.com Operations University of Vigo **Ricardo Tubio** *rtubio@xatcobeo.com Systems engineering University of Vigo*

César Martínez *martinefc@inta.es INTA support* Javier Comesaña javi@xatcobeo.com AIV University of Vigo

Fany Sarmiento sarmientoae@inta.es INTA support

- Xatcobeo is a CubeSAT mission for deploying two payloads and a mechanism into space
- The system is to be designed, assembled and tested by students from the University of Vigo in Spain
- It is a joint effort between the University of Vigo and INTA (National Institute for Aerospace Technology)

- Several engineering schools
- Three campus, three cities:
 - Vigo, Ourense and Pontevedra
- Core of the Xatcobeo project:

 multi-disciplinar team of students

UNIVERSIDADE DE VIGO

- The schools involved in this project are:
 - Telecommunications engineering (Vigo Campus)
 - Industrial engineering (Vigo Campus)
 - Computer engineering (Ourense Campus)

- A large team composed of 39 students is working on the project
 - -29 students from telecom engineering
 - -2 students from industrial engineering
 - -5 students from computer science
- More than 15 teachers from Vigo and Ourense are also supervising the project
- More than 10 technicians from INTA are providing support

The University of Vigo

Infrastructures

 Anechoic chamber
 Clean room
 (1:10000)

- INTA is the Spanish Public Research Organization specialized in aerospace research and technology development
- INTA has its base in Madrid

 So now it is three campus to coordinate!
- 9 people are working on support activities and payload development

- The project has been split in different phases, following the V-model for project development:
 - Phase 0 [KOM]: initial definition
 - Phase A [PRR]: project feasibility
 - Phase B [PDR]: preliminary design
 - Phase C [CDR]: design & implementation
 - Phase D [QR/FAR]: integration v-model
 - Phase E: operation
 - Phase F: disposal

- VEGA is the new launcher from ESA for lightweight payloads
- Scheduled launch date is November 2009
- Xatcobeo was born as an answer to a Call for Proposals to include 9 CubeSATs in the Maiden Flight for VEGA
- VEGA will launch us into an elliptical LEO orbit

- Subsystems
 - OBDH: On Board Data Handler
 - -TTC: Telemetry, Tracking and Command
 - EPS: Electrical Power Subsystem
 - Antennas
- Payloads
 - SRAD: Software RADio
 - RDS: Radiation Dose Sensor
- Qualification mechanism

 PDM: Panel Deployment Mechanism

Xatcobeo system

• OBDH

- Based on a Virtex-II FPGA
- Distributed system
 - OBC: On-Board Computer
 - Contains the software

- It is where the FPGA is located
- OBPIC: On-Board Programmable Interface Controller
 - Controller for payloads power
 - Signal conditioners for system bus
- Average consumption of 0,55 W
 - Peak power of 2,7 W for less than 50 ms

- EPS
 - Provided by Clyde Space
 - -Worst case ideal power generation of 3.27W
 - 2.41 W on system bus after degradations and performances
 - A battery of 1250 mAh is used for power storage
- TTC
 - Provided by GomSpace
 - Semi-duplex UHF, 437 MHz
 - Uses CCSDS for frame and channel coding

- Antennas
 - Turnstile UHF antenna
 - This antenna is complex in terms of deployment and integration
 - Total mass should be low
 - Our system weights 80 g including cables, connectors, antennas, deployment system, fixation and electronics board
 - Deployment is attained in 3-6 seconds
 - Patent pending

• The SRAD Software Defined Radio will evaluate the possibility of reconfiguring a programmable logic device in flight.

- PSK/DPSK gray coded
- FSK gray coded
- Binary ASK

- The development of a panel deployment mechanism comes from:
 - Real CubeSATs present power limitations
 - CubeSat restrictions regarding pyrotechnics
 - Test in flight a reliable panel deployment mechanism
 There aren't deployment systems for CubeSATs
- Improvement of power capacities and upgrade CubeSAT capabilities
- Xatcobeo will be a platform to qualify on-orbit deployment systems for CubeSATs

- PDM is a payload consisting of two sets of deployable solar panels.
 - Single panel deployment
 - Double panel unfolding.
- The first deployment mechanism is common for both sets
- In the double mechanism another mechanism is added to allow the unfolding of an extra panel.

PDM Concept (II)

- **RDS** (*Radiation Dose Sensor*)
 - Developed by INTA
 - Electronics Design Laboratory.
 - Space Radiation and Effects Unit.
 - Updated design of the INTA ODM payload for OPTOS satellite.
 - Electronic sensors will be supplied by LAAS CNRS France in order to:
 - Measure TID (total ionizing dose)
 - Improve Space Environment Models

RDS - Design

- Future steps
 - Evaluation of the replacement of one RadFET sensor by diode sensor.
 - Non-Ionizing Effects Data.
- Conclusions
 - In-Flight radiation data.
 - Improve radiation engineering processes.
 - Low power consumption sensor.

- ORGANIZATION PROBLEMS
- Dev. Teams located at different cities:
 - Madrid, Ourense and Vigo
- More than 40 people creating software, hardware and documents at the same time.

Project Organization

SOLUTION

Hierarchical organization

Electronic Management

• HIERARCHY

- 1. Tasks are split into WorkPackages (WP).
- 2. Each WP is assigned to a different team.
- 3. Each team is formed by:
- 1 teacher as supervisor
- 1 member of INTA for providing support
- 1 PhD student responsible
- NMsC/BsC thesis students as members
- X students as cooperators

Project organization

- Mission analysis consists in a series of studies about the environment for whom the system will be designed
- This environment adds constraints to the functioning of the system
- Stakeholders shall be identified previously
- Main studies for the mission analysis:
 - Link budget
 - Thermal budget
 - Space environment specification

- Vega mission's orbit
 - Keplerian elements:
 - Inclination = 71°
 - Altitude of perigee = 354 km
 - Altitude of apogee = 1447 km
 - Semimajor axis (a) = 7058.137 km
 - Eccentricity (e) = 0.075
 - Arg. of perigee [0°, 360°)
 - RAAN [0°, 360°)
 - Launch date, November 2009 (TBC)

- Link budget:
 - Study of the link between ground and space segments
 - Constraints: RF design and antennas
 - Antenna: 4-monopole UHF turnstile
 - PEP: 27 dBm (500 mW)
- Thermal budget:
 - Heat balance
 - Cold case: almost 40% of one orbit's time in eclipse

- Space environment:
 - Stimated using SPENVIS
 - Radiation environment:
 - South Pacific anomaly (~300 km)
 - Van Allen radiation belts (~1500 km)
 - Constraint (comercial components):
 - 5 krad in 3 months -> 190 grams of shielding

20 % of the CubeSAT is shielding!!!!

- Design of the overall system until a certain level of detail (system level)
- Currently, systems engineering team has finished the feasibility study of the system (phase A) and the pre-design of the system (phase B):
 - Initial mission requirements have been evolved into a feasible pre-design.
 - System's overall pre-design is in accordance with the pre-design for each subsystem

FENEST STREET

- Conclussions:
 - Not a common CubeSAT: requirements imposed by Vega's orbit
 - Power
 - Link
 - Thermal
 - Radiation
 - Current state of the project: phase C, detailed design
 - 2 payloads/1 mechanism:
 - Deployable solar panels
 - Software RADio
 - Radiation Dose Sensor

MINISTERIO DE CIENCIA E INNOVACIÓN

