

An SDR-Based Architecture Ground Station for Small Satellite Tracking

Presenter: Y.F. Tsai

Authors: C. T. Tsai, Y. F. Tsai, J. C. Juang, and J. J. Miau Department of Electrical Engineering National Cheng Kung University, Taiwan

Outline

- Background
- Motivation and objective
- Conventional ground station
- Ground station with software defined radio
- Implementation
- NLS4 Tracking Results
- Conclusion

Background

- Recently, small satellites and constellations are developed for earth observation or communication network.
- As many small satellites will be released in a piggyback launch, the closeness in spatial and spectral separation between different small satellites may render problems for ground stations in satellite tracking, especially in the early orbit phase.

Spectral Problem

Satellite frequency list in 435~438MHz:

Sat	Frequency	Sat	Frequency	Sat	Frequency
AO-51	435.1500 MHz	AO-16	437.0260MHz	CO-55	437.4000 MHz
CAPE1	435.2450 MHz	AO-16	437.0510MHz	Libertad-1	437.4050 MHz
AO-51	435.3000 MHz	GeneSat-1	437.0750 MHz	HO-59	437.4250 MHz
RS-22	435.3520 MHz	LO-19	437.1250 MHz	XI-V	437.4650 MHz
FO-29	435.7950 MHz	SSETI-1	437.2500 MHz	CO-57	437.4900 MHz
AO-27	436.7950 MHz	HO-59	437.2750 MHz	UWE-1	437.5050 MHz
SO-50	436.7950 MHz	NCUBE-2	437.3050 MHz	CO-52	437.5050 MHz
CO-55	436.8375 MHz	CP4	437.3250 MHz	SO-33	437.9100 MHz
CP3	436.8450 MHz	XI-V	437.3450 MHz	AAUSat-II	437.4250 MHz
CO-57	436.8475 MHz	CO-56	437.3850 MHz	COMPASS-1	437.2750 MHz
Cute-1.7+APDII	437.3850 MHz	SEEDS	437.4850 MHz		

Spatial Problem

> Example:

CAPE-1, CP3, CP4 and AeroCube-2 were launched on April 17th, 2007.

The picture of CP4 taken by
AeroCube-2 on April 17th, 2007Positions of CAPE 1, CP3, CP4
and AeroCube-2 on May 17th,
2007

- In the early orbit phase, all small satellites are close for several days, even one month. All satellite developers are eager to assess the status of satellites as early as possible.
- The problems (for a ground station to track multiple satellites) are
 - How to receive all the satellite signals simultaneously?
 → Wide band and multi-channel
 - How to improve BER?
 - \rightarrow Interference cancellation

- > Architecture
 - Antennas, Amateur radio, TNC modem, PC.

Comparison

> Architecture

Converter

Down Conversion

- Use band pass sampling to down-convert the signal.
- Need filter to prevent from aliasing

$$F_{IF} = \begin{cases} \operatorname{rem}(F_{RF}, F_{S}) &, \text{ if } \operatorname{fix}\left(F_{RF}, \frac{F_{S}}{2}\right) \text{ is even.} \\ F_{S} - \operatorname{rem}(F_{RF}, F_{S}), \text{ if } \operatorname{fix}\left(F_{RF}, \frac{F_{S}}{2}\right) \text{ is odd.} \end{cases}$$

 F_{IF} : Intermediate frequency F_{RF} : Radio frequency F_{S} : Sampling frequency

Fs Selection

Consideration: linearity (folded area), frequency resolution and available Fs.

- Because of Doppler shift, the received frequency is not fixed.
- By Short-Time FFT, frequency information varying with time can be estimated.
- The frequency information will be transmitted to the dynamic filter and Doppler shift calculator.

Frequency resolution = $\frac{F_S}{N} = \frac{6MHz}{N} \le 0.5kHz$ (*N* = 2¹⁴ = 16384) Time resolution = $N \times T_s = \frac{16384}{6M} = 2.7307 \text{ ms}$

- For separating multiple signals in the same frequency band, co-channel interference (CCI) cancellation methods are developed.
- For general ground stations, SAIC (Single Antenna Interference Cancellation) is suitable.
- Furthermore, MIMO (Multi-Input Multi-Output) can be implemented at ground stations with multi-antenna.

CCI Cancellation

- > Several SAIC methods are proposed:
 - Cross-coupled phase-locked loop (CCPLL)
 - Phase-tracking circuit (PTC)
 - Joint Viterbi estimation based on the maximum likelihood estimation (JMLSE)
- The CCPLL and PTC methods typically outperform the JMLSE when the modulation parameters are dissimilar. Good performance for the PTC requires both dissimilar parameters and a prior knowledge of the co-channel signal amplitudes.
- JMLSE provides for a more robust estimation of the co-channel signals.

- The receiver consists of ADLink PXI-3710 system controller and ADLink PXI-9820 A/D converter.
- Features:
 - 14-bit A/D resolution
 - Up to 60MS/s
 - 3dB bandwidth : about 30MHz
- Receiver function blocks are built in MATLAB/Simulink

SDR Implementation(3/4)

Receiver block diagram

- PXI-3710 has several interface to connect with ground station devices.
- The SDR and conventional transceivers can be combined in PXI-3710 with 'MATLAB ActiveX' component in Visual Basic.
- Transceiver calls the frequency information in MATLAB workspace and get the RF frequency.

$$F_{IF} \downarrow \implies F_{RF} = 144MHz + F_{IF} \quad (VHF)$$

$$F_{IF} \uparrow \implies F_{RF} = 438MHz - F_{IF} \quad (UHF)$$

- NLS4: Nanosatellite Launch Service 4
- Launch date: April 28th, 2008
- Launch vehicle:
 - Antrix Polar Satellite Launch Vehicle (PLSV-C9)
- Satellites onboard:
 - AAUsat-2 (Denmark), CanX-2 (Canada), Cute-1.7+APD II (Japan), COMPASS-1 (Germany), Delfi-C3 (Netherlands), SEEDS (Japan)
- Inclination: 98 degree
- > Altitude: 630 km

Result of VHF Band Receiving

Sampling Frequency: 6MHz

MECLAB, EE, NORO, Taiwan

MEC

Decoding Result

After decoding the filtered IF signal in Morse code format, we got some results:

> Compass-1:

?mpass29000000?0000001602c?1508

➤ Cute1.7+APDII:

cute 87 c6 a? a? 48 17 cute 8????8624 ????12 1

Conclusion

- We have proposed a method to improve ground station capability with software defined radio.
- > The benefit provided by the SDR receiver are:
 - 1.Multi-channel
 - 2. Wide frequency range
 - **3.CCI** cancellation
 - 4. More accurate Doppler shift information
- In May 2008, the proposed SDR receiver has already received simultaneously several signals from cubesats launched by NLS4.

Reference

[1] http://polysat.calpoly.edu/CP4.php

- [2] Peter B. Kenington, RF and Baseband Techniques for Software Defined Radio, Boston, Artech House, 2005
- [3] Jeffery H. Reed, Software Radio: A Modern Approach to Radio Engineering, Prentice Hall PTR, 2002.
- [4] W. Etten, "Maximum Likelihood Receiver for Multiple Channel Transmission Systems," IEEE Trans. Commun., Vol. 24, No. 2, pp. 276–83, Feb. 1976.
- [5] Rodney G. Vaughan, "The Theory of Bandpass Sampling," IEEE Trans. on Signal Processing, Vol. 39, No. 9, September 1991.
- [6] Riccardo Raheli, Andreas Polydoros and Ching-Kae Tzou, "Per-Survivor Processing: A General Approach to MLSE in Uncertain Environments," IEEE Trans. on Communications, Vol. 43, No. 2/3/4, Feb/March/April 1995
- [7] Akos, D.M. Stockmaster, M. Tsui, J.B.Y. Caschera, J., "Direct Bandpass Sampling of Multiple Distinct RF Signals," IEEE Trans. Commun., Vol. 47, Issue 7, pp. 983-988, Jul 1999.
- [8] Jon Hamkins, Ed Satorius, Gent Paparisto and Andreas Polydoros, "A Comparative Study of Co-Channel Interference Suppression Techniques," Proc. 5th IMSC, pp. 327-332, June 1997.
- [9] Mostafa et al., "Single Antenna Interference Cancellation (SAIC) for GSM Networks," Proc. IEEE VTC, Orlando, FL, pp. 1089–93.
- [10] http://en.wikipedia.org/wiki/Software-defined_radio
- [11] Charles R. Cahn. "Phase tracking and demodulation with delay," IEEE Trans. Inform. Theory, IT-20(1), pp:50-58, January 1974.

Thanks for your attention!