Lithium Ion Polymer Cell Tests for CubeSats

Andrew Strain, Vicki McLaren, Craig Clark

Clyde Space Ltd, 1 Technology Terrace, Todd Campus, West of Scotland Science Park, Glasgow, G20 0XA

18 August 2008

What we do

Lithium Polymer Battery Study

Clyde Space won ESA funding (ITI Program) to evaluate the suitability of a COTS Lithium Polymer Cell for applications in Small Satellites

The following tests have been carried out as part of this study:

Cell Characterisation Tests

- Physical Characteristics
- Electrical Characteristics
- DPA
- Standard Capacity
- Capacity Variation with Discharge Rate and Temperature
- Capacity Variation with Depth of Discharge
- Self Discharge/Optimum Storage Condition
- Vacuum Cycling
- EMF vs. SoC

Cell Balancing and Thermal Properties

- Thermal Properties
- Balancing Properties

Cell Characterisation Tests:

Standard Capacity Results

Standard Capacity measured at C/5 at 20°C

Manufacturer's Specification: Minimum Capacity = 1.200Ah

Cell Characterisation Tests:

Discharge Plots at Different Rates and Temperatures

Cells tested at C/15, C/10, C/5, C/2 and C rates, at 40°C, 20°C, 0°C and -20°C

Cell discharge plots at C/15 at all temperatures

Cell discharge plots at C/5 at all temperatures

Largest difference in capacity before and after testing was for -20°C tests, with a 3.2% decrease.

Cell Characterisation Tests

Variation of Depth of Discharge with Temperature

C/2 rate, 20°C, 10 cycles at each DoD (25%, 50%, 75%)

75% DoD

Cell Characterisation Tests Vacuum Cycling

C/2 rate, 20°C, 19mbar vacuum

Capacity, C/2, ambient pressure = **1.226Ah**Capacity, C/2, 19mbar pressure, cycle 1 = **1.193Ah**cycle 10 = **1.187Ah**

0.5% decrease in capacity between cycle 1 and cycle 10.

Cell Characterisation Tests

Storage and Self Discharge

Optimum storage condition is at 0°C, between 50 and 100% DoD

Cell Balancing and Thermal Properties Cell Skin Temperature Variation with Cycling

8 cell string, C/5 charge/discharge rate, 20°C

Maximum Temperature = 29.03°C

Minimum Temperature = 23.57°C

Cell Balancing and Thermal Properties

Cycling of 8 Cell String

50 cycles at C/5 charge/discharge rate, 20°C

Lowest end of discharge cell voltage = **2.641V**Absolute minimum voltage which a lithium ion cell can be discharged to is 2.5V
Largest drop in capacity after 50 cycles at C/5 was **0.4%**Largest difference in cell voltages at end of discharge = **0.59V**

Lot Acceptance Test Procedure

Cell Matching Procedure

- Batch passed LOT Acceptance Procedure
- Perform standard capacity measurements on each cell (4.2V 3V at C/5)
- Cells placed into groups according to measured capacity, varying by no more than 3% within group
- Strings of cells will be constructed of cells from only one group.

Clyde Space CubeSat Battery

- Two lithium Polymer Cells are connected in series, providing about 10Whrs at 8.2V
- Integrated thermostatically controlled heater
- Over/under voltage protection
- Over current protection (PTC device positioned on the battery board which can be easily replaced in case of short circuit)
- Voltage, Current and Temperature Telemetry
- Cell balancing circuitry

Thank You!

