

AtmoCube A nanosatellite for the study of Space Weather

5th annual CubeSat Developers' Summer Workshop August 9-10th, 2008 Utah State University

Alessandro Cuttin, assistant Project Manager Marco De Din, Payload engineer on behalf of the AtmoCube Development team

This is AtmoCube

5th Annual Cubesat Developers' Summer Workshop

Outline

- AtmoCube Executive Summary
 - Students' work
 - Mission requirements
 - The scientific case & Instrumentation
 - Vega Launcher
 - Mission analysis
- AtmoCube Systems
 - S/C description and structure
 - Power system
 - Telecommunication system
 - > OBDH
- The AtmoCube Team
- Milestones
- Education and outreach
- Conclusions

The AtmoCube Mission: executive summary

A satellite for:

- Involving students in a real Space Mission
- Studying the Space Weather and to map
 - the radiation flux (soft X-rays and protons)
 - the Earth magnetic field
 - the atmospheric density
- Proto-typing very low cost scientific applications
- Proto-typing very low cost space applications

See also www.units.it/atmocube

5th Annual Cubesat Developers' Summer Workshop

The students' work (www.units.it/atmocube)

University of Trieste Cubesat project

Home Mission News The Team Outreach Supporters Contact us Downloads

Thesis

Alessandro, 8 July 2008 (created 8 July 2008)

Name	Department	Title	Abstract	Presentation
Daniele Tavagnacco	Physics Department	Results analysis of the atmospheric density		
Valentina Alberti	Physics Department	Analysis of the Earth Magnetic Field		
Manuela Ciani	Physics Department	System for the settlement of the satellite AtmoCube with magnetic actuators		
Elena Orlando	Physics Department	First analysis of a satellite for the study of the earth atmosphere		
Xenja Santarelli	Physics Department	The radiation flux		
Claudio Zamberlan	Physics Department	Orbital analysis of the satellite AtmoCube		
Veronica Baldini	DEEI	Study about the AtmoCube Ground Station		
Lorenzo Moretti	DEEI	Design of ground station receiver		
Alessandro Cuttin	DEEI	System project of the AtmoCube satellite, system and communication architecture		<u>Available</u>
Samuele Falcomer	DEEI	Antenna design for the AtmoCube satellite	<u>Available</u>	
Marco De Din	DEEI	Preliminary study about the energy management of the AtmoCube satellite	<u>Available</u>	
Bruno Pendalo	DEEI	Final design of power supply system for satellite AtmoCube		
Walter Caharija	DEEI	Power supply system of the AtmoCube	<u>Available</u>	<u>Available</u>
Alessandro Corradini	MED	The AtmoCube structure		
Simone Manzato	MED	The AtmoCube structure		
Manuel Tommasini	DEEI	Design of LNA amplifier for the receiver of the satellite		
Emilio Montagnana	DEEI	Hardware design of the microprocessor for the housekeeping and data handling of the satellite AtmoCube	<u>Available</u>	
Stefano Punis	DEEI	Hardware design of the microprocessor for the control of the PLL		Available
Giovanni Gobbesso	DEEI	Design of low power stage of the AtmoCube transceiver		
Mauro Popesso	DEEI	RF power amplifier of the satellite transmitter	Available	Available
Fabio Sanvido	DEEI	Design of LNA amplifier for the receiver of the satellite		
Maurizio Ziani	DEEI	RF class E power amplifier of the satellite transmitter		
Giovanni Biancuzzi	DEEI	PLL synthesizer design		Available
Stefano de Fabbris	DEEI	Design and implementation of a Digital demodulator on DSP		Available

AtmoCube Requirements

- Scientific Measurement, "SPACE-WEATHER" studies
 - Radiation flux: Spectro-Dosimeter
 - Earth magnetic field: Magnetometer
 - Atmospheric density: GPS
- Constraints/issues:
 - Low cost simple, small and light system
 - Quasi-standard CubeSat structure
 - > 10 cm side cube, ^{High Energy Particles Cause Single Event} Kg masspetter 3 W power
 - > Avoid moving parts (mechanisms) and Mission Related Objects
 - Use of available launcher: non-optimized orbit
 - "Quasignmon-dedicated instrumentation
 - Limited accuracy of the measurements
 - Limited data tate (radio-amateur band)
 - Use of COTS with some exceptions

5th Annual Cubesat Developers' Summer Workshop

AtmoCube Scientific Case

AtmoCube Scientific Payload

The Radiation Environment

- Soft X-rays (up to 70 keV)
- Charged particles (protons)
- A Silicon Drift Detector to measure these fluxes
 - (expected events rate: 10² Hz)
- Added value: test-bed for future space missions

5th Annual Cubesat Developers' Summer Workshop

AtmoCube Scientific Payload

- The Earth Magnetic Field
 - Solar conditions 0.5%
 - Day/night 0.15%
 - Season 0.15%
- HMC2003 magnetometer
 - > Accuracy 4×10^{-10} T

5th Annual Cubesat Developers' Summer Workshop

AtmoCube Scientific Payload

The Atmospheric Density

variable	Solar minimum	Solar average	Solar maximum	
a _{drag} (m/s²)	-2.9×10 ⁻⁶	-8.8×10 ⁻⁶	-2.1×10 ⁻⁵	
⊿a /revolution (m)	-4.9	-14.5	-34.6	
⊿e /revolution	-6.1×10 ⁻⁷	-1.8×10 ⁻⁶	-4.3×10 ⁻⁶	

SSTL SGR-05 SERIES SPACE GPS RECEIVERS

Dimensions:70 x 45 x 10 mmMass:20 gPower:0.5-0.8 W @ 3.3 VPosition accuracy:10 m

5th Annual Cubesat Developers' Summer Workshop

The launcher: VEGA

- Proposal submission at the Vega Maiden Flight CubeSat Workshop (Jan, 2008)
- Selected to be flown on the Vega Maiden Flight with other 8 European CubeSats
- Launch scheduled for November, 2009
- Elliptic, 71° inclined orbit

5th Annual Cubesat Developers' Summer Workshop

USU - 08 10 08, A. Cuttin, M. De Din

Photo: ESA

Mission Analysis

AtmoCube Description & Structure

- CDS compliant
- Five boards
 - ➢ RF board for TC
 - Power supply & battery
 - Magnetometer & GPS
 - OBDH
 - Spectro-Dosimeter
- Total mass ~700 g (battery and boards included)

5th Annual Cubesat Developers' Summer Workshop

AtmoCube Subsystems

5th Annual Cubesat Developers' Summer Workshop

Power System

Solar Cells and Battery connection scheme

- Very simple architecture
- High reliability
- Current mode battery recharge

Tecstar GaAs 3-junction solar cells 63.4 × 38.7 × 0.36 mm

5th Annual Cubesat Developers' Summer Workshop

Power System: Power Supplies

On board communication system

The TeleCom System: Ground Station

- Located in the OAT, Basovizza (Trieste)
- Instrumentation:
 - Yagi-Uda antenna [10 elements, 430 MHz frequency, circular polarization] with rotors,controller,preamplifiers
 - Transmitter receiver for amateur communication
 - Ground Station Server (for Database)

On-board Data Handling

OBDH is responsible of the management of the system:

Acquire data from HK sensor to monitor S/C functionality
Sub-system management (manage the activity of subsystems, collect data from sensors and store values in memory)

Manage the connection to the ground station

Data Volume Budgets

- Measurements every 300 s corresponding to 20 per orbit
- > 10 orbits max visibility gap
- > 9,600 bps rate
 - Time required for downlink: 250 s

Instrument	Data volume (bytes)
Drift Chamber	512
GPS	100
Magnetometer	15
НК	100
Photodiodes	12
Total	739
Total (margins)	1,000

AtmoCube Milestones

Satellite:

- Start
- End Design Phase
- End EVB Phase
- End Proto & Project

January 2008 June 2008 October 2008 1st quarter 2009

January 2008

2nd quarter 2009

Ground station:

- Start
- End EVB Phase

December 2009

End Ground Station

5th Annual Cubesat Developers' Summer Workshop

AtmoCube Development Team

- Principal Investigator
- Co-Investigator
- Project Manager
- AtmoCube Scientist
- Steering Committee

- Anna Gregorio Sergio Carrato Mario Fragiacomo Mauro Messerotti
- > AG, SC, MF, MM, W. Bonvicini, L. Bregant, A. Vacchi
- AtmoCube Development Team
 - 14 senior physicist and engineers
 - 21 students
 - 2 fellowships
- > Up to now
 - 22 theses in AtmoCube
 - Work is in progress, at least one student on each S/C system

AtmoCube Collaboration

- Trieste University
 - Physics Department
 - Electronics Engineering Department
 - Mechanical Engineering Department
- INAF (National Institute for AstroPhysics)
- INFN (National Institute for Nuclear Physics)
- > Area Science Park Industries:
 - > ENTEOS
 - > ELCON
 - > ELIMOS
 - > SICOM
 - > SCEN

5th Annual Cubesat Developers' Summer Workshop

Education and Outreach

- University
 - Theses
 - Trainings
 - Job opportunities
- High School
 - Lectures
 - Stages
- General public
 - Public lectures
 - Media

5th Annual Cubesat Developers' Summer Workshop

Conclusions

AtmoCube is an effective tool for achieving the following goals:

- Involve students in a real Space Mission, at all educational level, from School to University
- Synergize interdisciplinary collaborations among different University depts., research institutions and companies
- Raising public awareness on space science
- Carry out small scientific experiments in the framework of Space Weather
- Proto-type very low cost scientific applications
- Proto-type very low cost space applications
- Involvement of industries for job opportunities for students and possible technological transfer

