

DEFINING THE FUTURE

LCROSS: A Unique Spacecraft For A Unique Mission

2008 CubeSat Workshop April 11, 2008

> Craig Elder LCROSS Spacecraft Lead EE & Deputy Project Manager

• Does Water Ice exists at the bottom of very deep, permanently-shadowed craters at the Moon's poles?

The Means to "The Answer" is LCROSS

- The Concept: Drive a spent upper stage rocket into the bottom of one of these craters to kick up as much regolith as possible.
- The Bonus: If conditions are right, LCROSS will separate from the Centaur, perform a braking burn, analyze the Centaur impact, then impact in a nearby location to create a second observable plume.
- [link to LCROSS Mission video]

LCROSS was Different than Usual Approach

- Northrop is used to building large, complex scientific and military spacecraft
- But LCROSS needed to be
 - VERY low-cost
 - Developed on a VERY short schedule

James Webb Space Telescope

NORTHROP GRUMMAN

The Result: The LCROSS Spacecraft

Nominal Mission Timeline

Unique Design Challenges

- Technical: LCROSS had to support the weight of LRO during launch, plus support it's electrical and mechanical interfaces.
 - LCROSS made extensive use of ESPA ring structure's capabilities
 - Timely data exchanges with LRO, Launch Vehicle, & Launch Site Teams
- Cost: As a Class-D mission, LCROSS had to keep total mission cost under \$79M fiscal limit.
 - Extensive re-use of designs reduced Non-Recurring Engineering costs
 - Small team of focused experts reduced documentation costs
- Schedule: LCROSS would only be allowed to use LRO's Centaur if we could meet the 2008 LRO launch date
 - Designs could only use available parts
 - Tests had to be tailored or deleted
 - Risk Management used extensively in trades, implementation

EELV Secondary Payload Adapter (ESPA) Ring is mounted to Propulsion Tank Support

Integrating Electronics onto Panels

Next Stop...the Moon!

DEFINING THE FUTURE

Appendix

 It isn't often that a designer gets to add weight to a spacecraft, but when your mission is to kinetically dislodge as many tons of lunar regolith as possible, a unique design results. The Northrop-NASA Lunar CRater Observation and Sensing Satellite (LCROSS) team took advantage of weight margin and mission trajectory to simplify the spacecraft design (add extra power sources, eliminate costly deployables, re-use heritage spacecraft components). These simplifications allowed LCROSS to meet the 2008 launch date AND keep total mission cost under the \$79M fiscal limit.