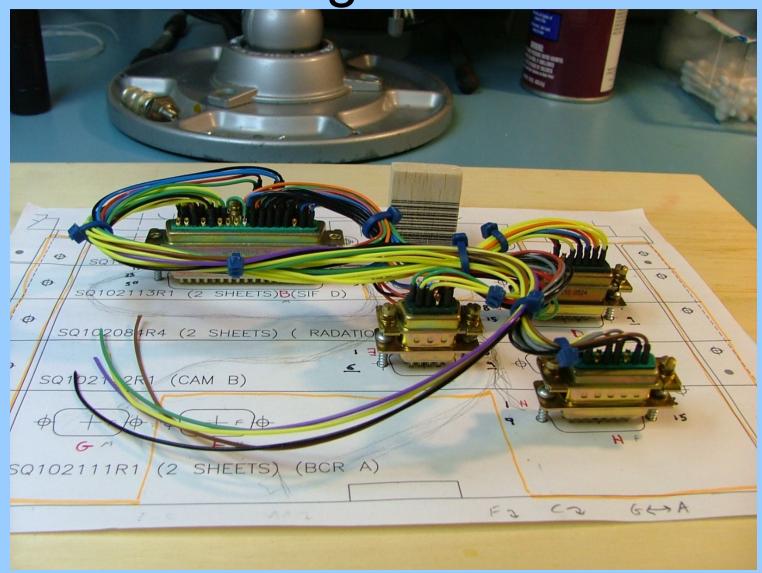
### Networking for Nanosats


Luke Stras

www.stras-space.com

### A Step Back


- old-school design centralized CPU
- works great, but...
  - massive wire harnesses
    - complex, heavy, inflexible
  - harder to do interactive integration
  - centralized point of failure
  - people step on each other's toes
    - and everyone wants hardware to play with

# Building a Harness



### So, Distribute

- put CPUs and I/O where they're needed
- hardly revolutionary
  - MIL-STD 1553, 1773
  - Hubble, SMEX, MIDEX, SAMPEX, ISS
    - 1980s-vintage Battlestars
- but Moore's Law helps
  - MOST
    - late 1990s 50 kg microsat
  - SNAP-1
    - 2000 6.5 kg nanosat
  - SpaceQuest Distiller
    - 2006 0.5 kg



# Why?

- smaller wiring harness
  - just power + data
    - though still need "last-inch" I/O
  - smaller connectors
- improved robustness
  - node crash won't cascade
  - quasi-redundant (with careful partitioning)
  - decrease MTTF, but increase availability

# Still Why?

- easy to partition work
  - each sub-system gets their own S/W and H/W
  - easier to distribute geographically
- easier integration
  - plug-and-play
  - pull bad nodes
  - use surrogate nodes for unfinished hardware
  - piecewise integration

#### How To Do It

I. pick a technology
II.implement it
III.done!

#### Standards Are Great

- ... because there's so many to choose from
- look at some factors
  - speed
  - power consumption
  - physical layer
  - link layer
  - network layer
- but don't make your own
  - unless that's your mission

# Physical Stuff

- speed: 100 kbps to 400 Mbps
- power consumption
  - speed is power
  - consider steady-state power vs. E/bit
- topology
  - hubs need space, power, reliability
  - buses are slower, have funny connectors
- physical medium
  - pickier for faster networks

#### Software and Protocols

- often coupled to physical network
  - TCP over Ethernet, CANOpen over CAN
  - but IP over ATM, too
- standards are great
  - often have subtle design features
- simple terminal software is good
  - leverage existing technology
- think this through!
- good toolkits are worth their weight in bits

#### Some Practical Standards

| Std      | Speed | Topo*    | Pwr<br>[mW] | E/bit<br>[µJ/bit] | Proto?** | Complex |
|----------|-------|----------|-------------|-------------------|----------|---------|
| RS-232   | 100k  | PtP peer | 45          | 0.45              | No       | Low     |
| RS-485   | 100k  | bus peer | 45          | 0.45              | No       | Low     |
| I2C/SPI  | 100k  | bus M/S  | 13          | 0.13              | Some     | Low     |
| CAN      | 125k  | bus peer | 100         | 0.86              | Yes      | Med     |
| Ethemet  | 100M  | PtP peer | 260         | 0.0026            | Yes      | Med/Hi  |
| Ethemet  | 10M   | PtP peer | 125         | 0.013             | Yes      | Med/Hi  |
| USB      | 12M   | PtPMS    | 6           | 0.0005            | Yes      | Hi      |
| FireWire | 400M  | PtP peer | 930         | 0.002             | Yes      | Hi      |

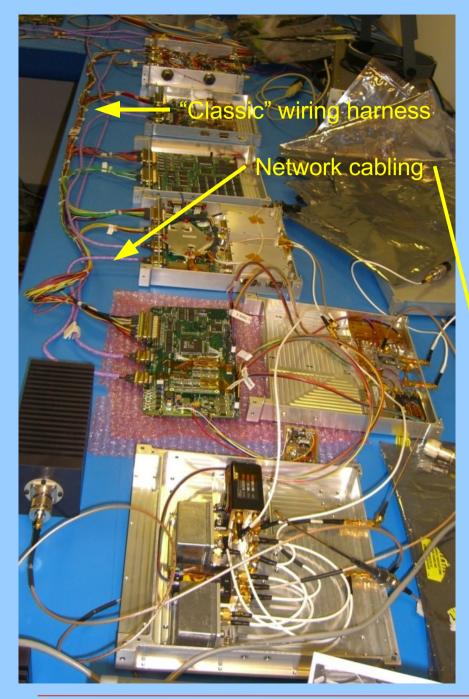
<sup>\*</sup> Network topology

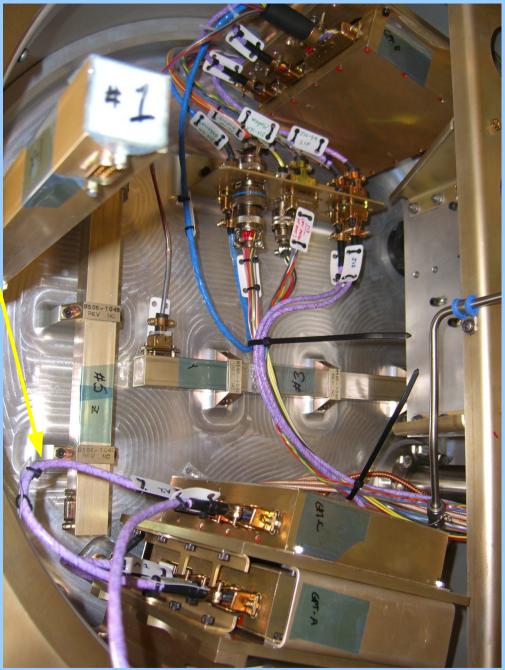
PtP = point-to-point

bus = common bus

peer = nodes are equivalent peers

M/S = nodes are in master/slave relationship


\*\* Higher-level protocols defined?


#### No Silver Bullets

- more power
- more area
- funny connections (maybe)
- more pieces to test
- more software to write
  - remember Brooks' Law

#### Conclusions

- small satellites don't have to be bespoke
  - getting less so every year
- easy to partition work
  - especially for multi-year projects with high staff turnover
- sometimes, you plug it all in, and it just works
  - but when it doesn't, you can isolate broken bits



