

PolySat Launch and Operations

Cubesat Developers' Summer Workshop Logan, Utah 12 August 2007

PolySat

- Objective: Engineering Education
- Objective: Provide a reliable bus system to allow for flight qualification of a wide variety of small sensors and attitude control devices.

Multidisciplinary Space Technologies Laboratory

Earth Station

- Yeasu FT-847 and Icom IC-910
- Yaesu G-5500
- MixW Software TNC
- Mac Doppler Pro for tracking

Earth Station

Marconi dual phased 70 cm yagis

Hertz
2 m yagi
70 cm yagi

Operations Experience

- Training Objectives
 - Successfully make contact with a CubeSat
 - Download and decode AX.25 digital data.
- Collaboration with University of Tokyo
 - Experience gained with XI-IV

CP1

- Magnetorquer developed by Cal Poly
- Third party Sun Sensor
- Valuable lessons learned
 - CubeSat development: challenges & logistics
 - Multiple Flight Units

DNEPR 2 – April 17th 2007

- CP2.1 manifested as CP4 🦚 🐗
 - Energy Storage and Dissipation Experiments
 - Test and Characterize CPBus

- Attitude Determination using a suite of sensors
- Attitude Control using
 Magnetorquers in each side panel
- Observation Imagers: lots of data to download!

Lessons Learned

- Beacons
 - Object identification
 - Immediate data
- RF power
- Solar panel efficiency
- Contingency plan

On-Orbit Data

On-Orbit Data

Amateur Radio Involvement

- 80% of lab personnel are hams
- Training the next generation of satellite builders and operators
- Huge community of active listeners
 - Colin Hurst and Mike Rupprecht

The Ground Station Network

GENSO Background

- Global Educational Network for Satellite Operators
- Originally started with the Japanese to combat interference (GROWS)
- Started under the International Space Education Board, a collaboration between CSA, ESA, JAXA, and NASA
- Approved on 5 October 2006 for 2 years
- Project to link low-cost earth stations

GENSO Background

- A system to link ground stations using the internet
- Only 1200/9600 baud data for now
- Three parts:
 - Central server
 - Authentication and registration
 - Mission Control Client
 - Scheduling of Ground Station Servers
 - 1 MCC per satellite developer
 - Ground Station Servers
 - Actual interface between rotors/radio and internet

Central Server

- 3 central servers located around the world
 - Europe
 - California (Cal Poly or SRI)
 - Japan
- Tasked with Authentication and Registration only
 - Registration of IP addresses of GSS and MCC
 - Statistics
- All other functions (scheduling, data transfer) will go peer-to-peer between Mission Control Clients and Ground Station Servers
 - This keeps the load off a single server when system scales up

Mission Control Client

- A program that runs on a personal computer that can control Ground Station Servers
- Uses the Central Servers to get IP addresses for individual GSS, then contacts the GSS's directly to:
 - Schedule an active session
 - Download decoded data
 - Control the radios and rotors to track a satellite during an active session
 - IRC Client?
 - Skype Client?

Ground Station Server

- Compatible with a majority of ground stations currently operating
- "Passive" tracking:
 - Will continuously track all satellites it can decode
 - Will forward data on to MCC
- "Active" tracking:
 - Someone at a MCC is actively controlling the rotors and radio, looking at the decoded data, and listening to the audio
 - Must be scheduled prior to satellite pass and cleared with GSS
 - Requires offline interaction and parties that know each other
- Store audio/data locally and stream to MCC as bandwidth allows
- IRC and/or Skype client?

"Standard" Earth Station

- Icom IC-910 radio with computer interface
- M² OR2800P-DC for Azimuth and MT-1000 for elevation
- Symek TNC 31S
 - Possibly software in future
- Antennas:
 - 2MCP22 for 145 MHz
 - -436CP42UG for 437 MHz
 - 1 meter dish for S-band (downlink only)

Workshop IV

- At Cal Poly 2-6 July 2007
- Completed PDR
- Documentation Finished
- Started to work on the code
- Initial testing slated for late summer

www.cubesatalumni.com

Spring Workshop

- April 2008 (possibly 10-12 April)
- Huntington Beach, CA
- Looking for presenters and sponsors
- Contact Riki, Lori, Matt D, or Dr. P
- cubesat-workshop@atl.calpoly.edu

Announcements

- SmallSat Conference
 - Booth upstairs in 7U and 8U
 - Inside Room 311
- Camera Charger
- Thanks for coming to this workshop
- Presentations are online at cubesat.org
- This room is open

Thanks!

polysat.calpoly.edu cubesat.org

Justin Foley jfoley@calpoly.edu

Bryan Klofas bklofas@calpoly.edu