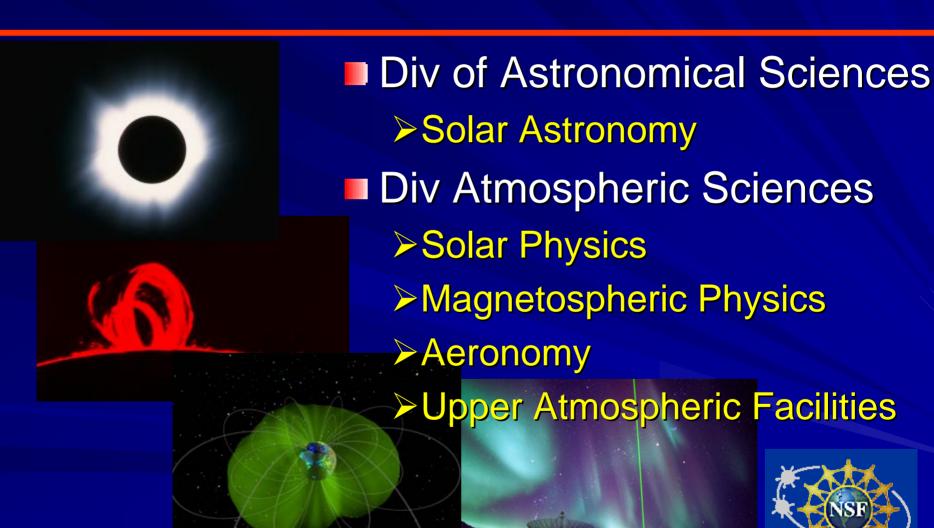
Cubesat-based Science Missions for Space Weather Research: Plans for a new NSF Program

Therese Moretto Jorgensen National Science Foundation

National Science Foundation (NSF)

- Independent Agency of the Federal Government of the United States
- Established 1950 to promote and advance scientific progress in the United States
- Sponsors scientific research in most fields of science and engineering
 - >operates no laboratories itself
 - >does not conduct research itself.



National Science Foundation also....

- Supports education and training at all levels
- Promotes public understanding of science, engineering and math
- Ensures a world-class science, engineering and technology workforce for the U.S.

Space Physics at NSF

Space Weather

"Space weather" refers to conditions on the sun and in the space environment that can influence the performance and reliability of space-borne, earth-based, and planetary technological systems and endanger human life or health.

- NSF supports basic research on space environment processes in support of the NSWP
- Lack of essential observations from space is a major limiting factor currently in space weather research.
- Investigating the use of small satellites to address space weather goals was a key recommendation in a recent assessment of the NSWP (Lanzerotti panel)

The NSF Small Satellite Workshop

- Background
 - NSF is considering establishing a program for small satellites for space weather research
- May 15-17, 2007 at George Mason University, VA
- Purpose
 - ➤ To explore the possibilities and benefits of utilizing small satellite missions to provide essential measurements for space weather and atmospheric research
- Participation
 - About 150 participants from academia, government (DOD, NASA, NSF), and private aerospace industry

Some Main Findings

- It is feasible
 - Scientific satellite missions in the \$1M-\$10M range (incl. launch) seem possible
- It will advance space weather research
 - > Missions can help fill important observational gaps
 - Will inspire the development of new experimental methods and technology
- It has Educational benefits
 - Crucial role in training the next generation of experimental space scientists and aerospace engineers.
- The main obstacle is access to space!
 - Securing regular, low-cost access to space for sin scientific payloads is non-trivial

Developing a NSF Satellite Program Supporting Space Weather

- The goal: A continual program of \$5M \$10M per year
 - ➤ To advance space weather and atmospheric research and education through development, building, launch, operation, and data analysis of small scientific satellite missions
- First steps
 - Establish partnerships with other government agencies and private industry to secure a series of regular, lowcost launches
 - Construct a 5 to 10 year program and conduct annual proposal competitions consistent with programmatic plans and space weather goals

Start-up Program Plans

- Cube-sat based science missions
- Launching 2-3 P-PODs per year
 - ➤ Starting late 2009
- 3-6 new science missions per year
 - > Regular research grants
 - > 3-5 years, ~\$300k \$900k Total Cost
 - Includes Satellite design, building, and testing, operations, and data distribution and analysis
 - Selection based on potential science return
 - -- NOT pure technology demonstration
 - Training and student participation REQUIRED

Potential Budget Scenario

	FY08	FY09	FY10	FY11
1 st missions	\$900k	\$900k	\$900k	
1 st launch		\$700k		
2 nd missions		\$900k	\$900k	\$900k
2 nd launch			\$700k	
3 rd missions			\$900k	\$900k
3 rd launch				\$700k
4 th missions				\$900k
Etc.				
TOTAL	\$900k	\$2,500k	\$3,400k	\$3,400k

- This Assumes:
 - ➤ One set of Science missions per year: \$900k
 - ➤ Integration and launch of 3 P-PODs: \$700k
- Disclaimer: these are not approved numbers!

Getting Ready

- On my side
 - ▶ Draft Solicitation; Hopefully out Fall 2007; Deadline for proposals early 2008
 - Secure agreements for integration and launches
- On your side
 - Develop mission ideas
 - > Team up! Establish appropriate collaborations
- Together
 - This is totally new for NSF!
 - Your help with establishing an efficient and successful process is greatly appreciated

