JHU/APL CubeSat Summary

Andy Lewin 11 August 2007 APL The Johns Hopkins University APPLIED PHYSICS LABORATORY

Overview

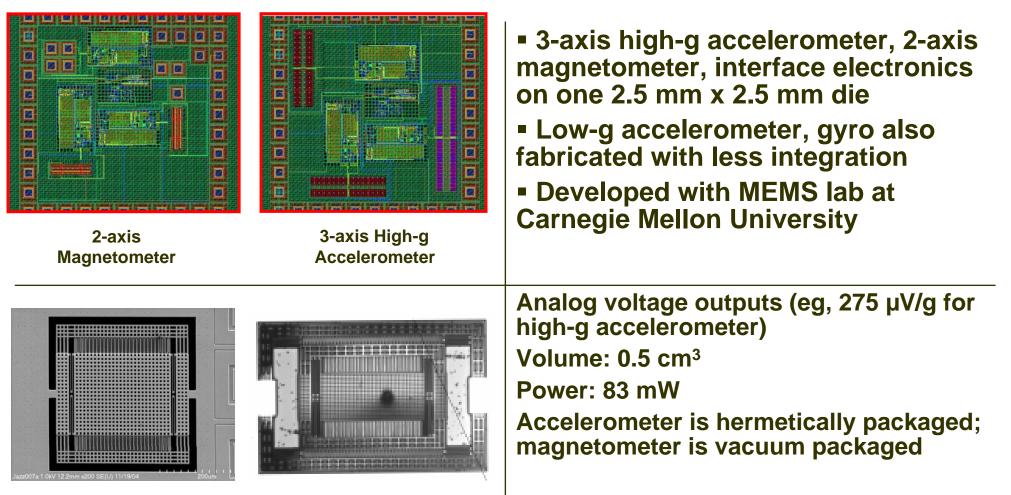
- APL is providing active support for the CubeSat community
 - Advocacy for CubeSat/nanosatellite secondary payloads on missions in which APL is involved
 - Provide facilities at reduced or no cost
 - Mentoring/advising
 - Sponsor student interns
- APL is pursuing three paths for CubeSat involvement
 - Externally sponsored "high" value missions
 - Internally sponsored technology/concept demonstration missions
 - Donated payloads to CubeSat missions

"High" Value Missions

- Educating APL staff on CubeSat capabilities
 - Foster development of concepts that can meet sponsors' critical challenges
- Evaluating the potential of CubeSats in the upcoming NASA SMEX AO

Internally Sponsored Technology/concept Demonstration Missions

- Initiated FY07 IRAD project
 - Held open call for CubeSat payload/mission ideas
 - Selected three concepts for further study
 - Met with numerous members of the CubeSat community to better understand capabilities and costs
 - Very interested to meet with other CubeSat providers during this conference
 - Downselect planned for early September 2007
 - High probability of a program start in FY08
- Three concepts
 - MEMS space weather sensor
 - Space networking
 - Proximity operations

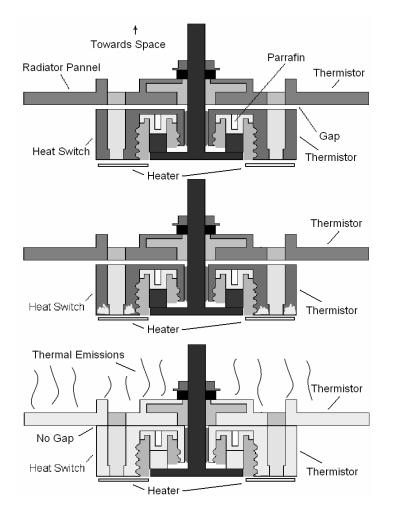

Donated Payloads to CubeSat Missions

- APL is developing numerous technologies that would benefit from space flight
- Payloads would be donated to interested CubeSat teams
- Sample of technologies presented here
 - Complete package available upon request

Micro Liquid Pulsed Plasma Thrusters

Power & Trigger Inputs Thruster Exit	 Water-fueled (current prototype) Arrays of thrusters possible in small, lightweight polyimide structures High Isp for efficient propellant utilization
 Fabricated using printed circuit board techniques Moderate voltages (~600V) simplify power processing electronics 	Dry mass: 13.5 g w/ integral tank (~1 cc capacity adds 1 g) Size: 2.5 cm x 2.5 cm x 1.3 cm Power: 100 mW (1 Hz firings)
Image: Second system Image: Second system Image: Second	Flow Micro-PPT Plume

MEMS Inertial Sensor Suite


Low-g Accelerometer

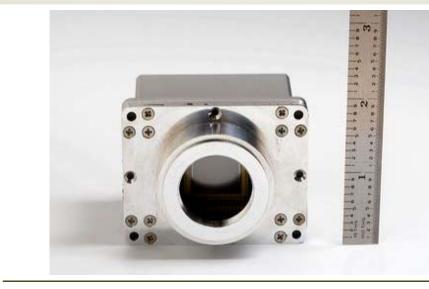
Gyro

SPREAD and Spines Messaging Infrastructures

- Open-source infrastructures developed at JHU
- SPREAD toolkit for intra-spacecraft messaging:
 - Most effective for synchronizing multiple computing devices, distributed systems
 - Could run on top of 1553B, SpaceWire, and optical comm layers
 - Thousands of ground implementations, but no space demonstration
 - www.spread.org
- Spines for inter-spacecraft messaging:
 - Support for multi-hop mesh networks
 - Ideal for CubeSat constellations, swarms
 - Could also link satellites to ground station access
 - Demonstrated with 802.11 wireless routers
 - www.spines.org

Thermal Switch

Thermal switch when open (top) and closed (bottom)


Switch becomes thermally conductive above threshold temperature
Gap (vacuum) prevents thermal conduction below threshold
Operates without active control; Heater used for demonstration

Mass: 25 g + radiator (~125 g) Power: 3 W maximum for heater Data: 2 temperatures, heater current Size: 8.2 cm x 4.2 cm Requires radiative panel Prototyped in cooperation with Naval Academy

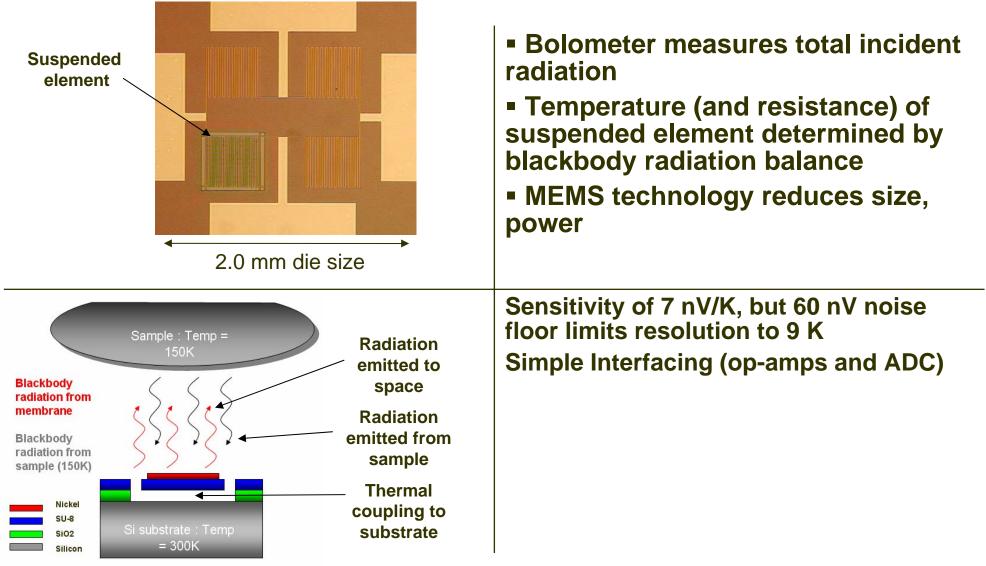
Disciplined Ultra-Stable Oscillator (USO)

<image/>	LE-14 USO shows best frequency stability through 1000 sec averaging time
Provides time-tagging for	Mass: 300 g*
sensor data down to 1 µsec	Power: 3 – 5 W*
resolution	Volume: 200 cm ³ *
Referenced to GPS; only	*Assumes packaging is integrated with bus
requires intermittent signal	Requires GPS interface
Up to 30 day autonomous timekeeping in LEO	USO based on proven APL technology; discipline has been laboratory demonstrated

MicroCam

- 1024 x 1024 pixels
- Monochrome
- Radiation hardened
- I Hz frame rate
- 10 ms to 0.5 s exposure time

Mass: 125 g without lens Size: 6.25 x 5.4 x 4.95 cm


Power: 0.6 W

Data: 10.5 Mbits per frame; 10-bit LVDS raw output

Requires lens (C mount), clock, control, and power interfacing

MEMS Bolometer

Summary

- APL is now actively engaging with the CubeSat community
- Open offer of assistance to CubeSat programs
- Considering use of CubeSats on high value science, technology, and concept demonstration missions such as SMEX
- Working to define an APL CubeSat program
 - In concert with a university partner
- Numerous technologies available for donation to CubeSat missions