POLYSAT A University CubeSat Story

California Polytechnic State University, USA PARIN PATEL BRYAN KLOFAS

CubeSat Developer's Workshop

The Boeing Company, Huntington Beach California April 20th 2007

- Started in 1999 by a Multidisciplinary Team of Engineering Students
- Objective: Engineering Education
- Objective: Provide a reliable bus system to allow for flight qualification of a wide variety of small sensors and attitude control devices.

- Magnetorquer developed by Cal Poly
- Third party Sun Sensor

- DNEPR 1 launch failure: July 26th 2006
 No in orbit operations
- Valuable lessons learned
 - CubeSat development: challenges & logistics
 - Non-Reoccurring Costs: Multiple Flight Units

Operations Experience

- Training Objectives
 - Successfully make contact with a CubeSat
 - Download and decode AX.25 digital data.
- Trans-Pacific Collaboration with University of Tokyo
- Autonomous Beacon
 - Locating the CubeSat after deployment
 - Acquisition of signal
 - Health status / contingency mode
- Normal CubeSat
 - 1/2 to 1 watt RF
- U of Tokyo (XI-IV)
 - Only 80 mW beacon: Morse Code
 - Comes in crystal clear!

XI-IV Images

Deployment to First Contact

- Launch
- P-POD deployment
- Antenna deployment
- First beacon
- First possible pass
- First contact

DNEPR 2 – April 17th 2007

- CP2.1 manifested as CP4
 - Energy Storage and Dissipation Experiments
 - Test and Characterize CPBus

- CP3
 - Attitude Determination using a suite of sensors
 - Attitude Control using Magnetorquers in each side panel
 - Observation Imagers: lots of data to download!

Parallel Operations

- Yeasu FT-847 and Icom IC-910
- Yaesu G-5500
- MixW Software TNC
- Mac Doppler Pro for tracking

The Ground Station Network

GENSO Background

- Global Educational Network for Satellite Operators
- Originally started with the Japanese to combat interference
- Started under the International Space Education Board, a collaboration between CSA, ESA, JAXA, and NASA
- Approved on 5 October 2006 for 2 years
- Project to link low-cost earth stations

Canada

Japan Aerospace Exploration Agency

National Aeronautics and Space Administration

What is **GENSO**

- A system to link ground stations using the internet
- Only 1200/9600 baud data for now
- Three parts:
 - Central server
 - Authentication and registration
 - Mission Control Client
 - Scheduling of Ground Station Servers
 - 1 MCC per satellite developer
 - Ground Station Servers
 - Actual interface between rotors/radio and internet

Central Server

- 3 central servers located around the world
 - Europe
 - California (Cal Poly or SRI)
 - Japan
- Tasked with Authentication and Registration only
 - Registration of IP addresses of GSS and MCC
 - Statistics
- All other functions (scheduling, data transfer) will go peer-to-peer between Mission Control Clients and Ground Station Servers
 - This keeps the load off a single server when system scales up

Mission Control Client

- A program that runs on a personal computer that can control Ground Station Servers
- Uses the Central Servers to get IP addresses for individual GSS, then contacts the GSS's directly to:
 - Schedule an active session
 - Download decoded data
 - Control the radios and rotors to track a satellite during an active session
 - IRC Client ?
 - Skype Client?

Ground Station Server

- Compatible with a majority of ground stations currently operating
- "Passive" tracking:
 - Will continuously track all satellites it can decode
 - Will forward data on to MCC
- "Active" tracking:
 - Someone at a MCC is actively controlling the rotors and radio, looking at the decoded data, and listening to the audio
 - Must be scheduled prior to satellite pass and cleared with GSS
 - Requires offline interaction and parties that know each other
- Store audio/data locally and stream to MCC as bandwidth allows
- IRC and/or Skype client?

"Standard" Earth Station

- Icom IC-910 radio with computer interface
- M² OR2800P-DC for Azimuth and MT-1000 for elevation
- Symek TNC 31S
 - Possibly software in future
- Antennas:
 - 2MCP22 for 145 MHz
 - 436CP42UG for 437 MHz
 - 1 meter dish for S-band (downlink only)

CP3 and CP4 status

- CP4 (CP2.1)
 - Heard beacon most every pass at Cal Poly
 - In pre-ops mode, beacons every 5 minutes
 - Decoded data packet last night cold with too much power
- CP3
 - Not heard from yet
 - Haven't really tried
 - Only one left that hasn't been heard from
- Due to downlink mode, we need good keps to decode packets
 - Space-Track still having trouble with 16 objects
 - Need more time

Questions?

ppatel@calpoly.edu bklofas@calpoly.edu

polysat.calpoly.edu www.cubesat.org

