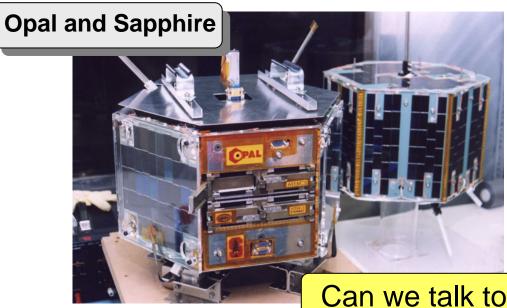
Lessons Learned From Remote Ground Station Operations

 James Cutler

 Space and Systems Development Laboratory (SSDL)

 Stanford University


Can we talk to our satellites like we talk to Google?

SSDL – Remote Ops Since 2000

- Five satellites in orbit
 - Opal, Sapphire, Quakesat,
 - GENESAT, MAST
 - Future...solar sails!
- Near space launches
- Earth stations:
 - Alaska (U/VHF), California (U/VHF,S)

Can we talk to our satelilites like we talk to Google?

High Altitude Balloon – BioLaunch B07A

Santa Cruz from 70K Feet

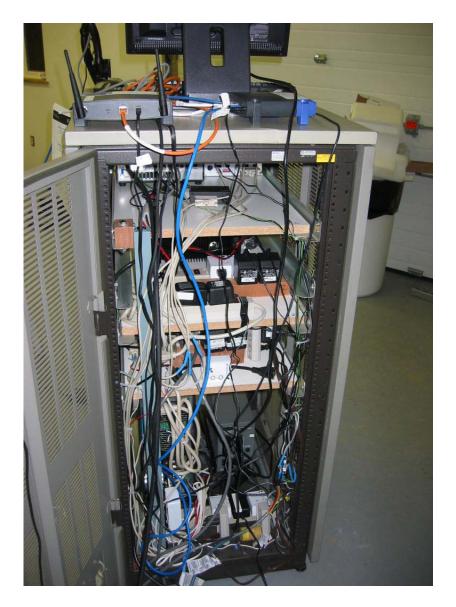
Remote Operation – Lazy or Useful?

- DNEPR 2 passes
 - ~12 @ Fairbanks, Alaska
 - -~4 @ Stanford, California

Lesson: Local Operation is Most Informative

- Direct access to equipment
- Higher bandwidth telemetry
 - Audio
 - Spectrum analyzer
- Tracking Roles
 - Tracking
 - Spectrum/Signal monitoring
 - Sat ops
 - Coordination Communication

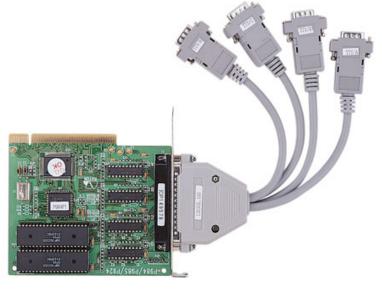
How can we improve remote operation?



Lesson: IP Everywhere

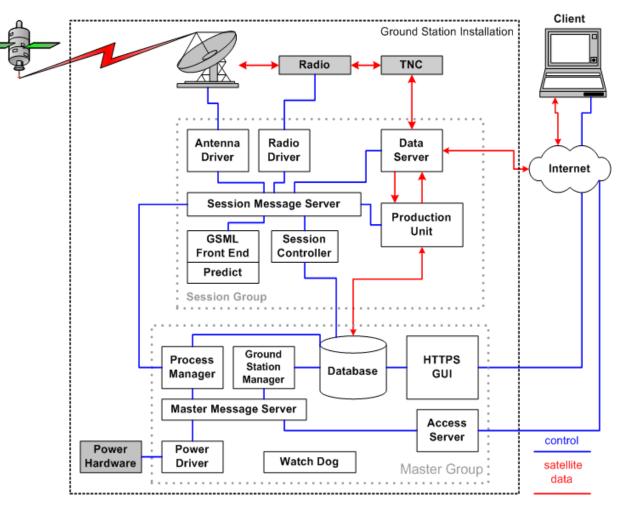
- Network enable hardware.
 - Most HAM equipment is RS-232.
 - Power over Ethernet (POE)
- End-to-end IP to satellite
 - See OMNI project at NASA-GSFC

How do we support legacy systems?



Serial To Ethernet Bridges

- Convert serial ports to ethernet (TCP/IP)
 - Dedicated hardware (Moxa, etc)
 - Hardware and software (Linux + serial port cards)
 - Virtual serial ports, termnetd
- Works for legacy HW and SW



Mercury Ground Software

- Manual or autonomous tracking
- Network accessible (browser and "telnet")
- Open source
- COTS parts
 - Linux
 - Apache
 - MySQL
- Runs on my laptop
- GSML ground station markup language
 - Abstract control of station
- Operational, and under development

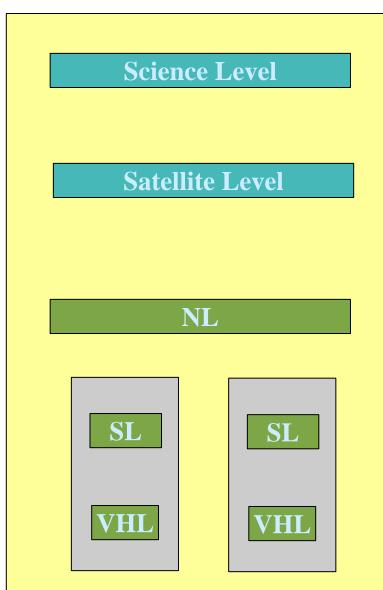
Lesson: Hackers Lurk Everywhere

🛱 Slashdot: News for nerds, stuff that matters - Mozilla	
xaa ⊭aasaa ⊯aas OSTG SourceForge ThinkGeek ITMJ Linux.com NewsForge freshmeat Jobs PriceGrabber X	
Slashdof news for nerds. stuff that matters.	Search
► Login Create Account Subscribe Firehose	Why Login? Why Subscribe?
	A11 A 1 11

- Security is a concern
 - Networked stations are exposed
- Slashdot effect
- Daily/hourly attacks on our machines
- Be prepared and nimble
 - It's not as bad as it sounds if you careful
 - We use virtual machines (VmWare, Xen)

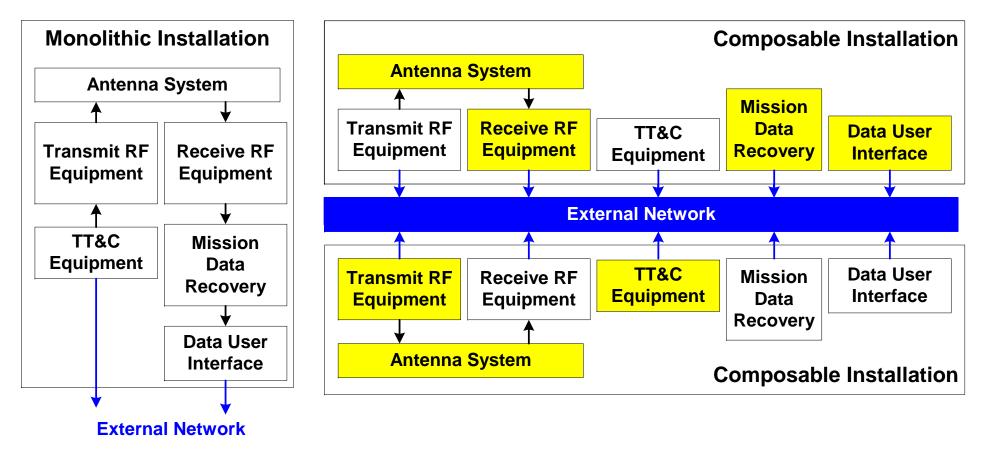
Lesson: Failures are a fact!

- Failure not a problem, but a fact!
- We cope with them through recovery/repair.
- Improving recovery/repair improves availability
 - Availability = MTTF / (MTTF + MTTR)
 - Make MTTF very large; then Availability =>
 1, but, what if MTTR << MTTF
- Failure examples
 - Recent DNEPR2 support
 - Percussive adjustment of radios
 - Fairbanks Internet links



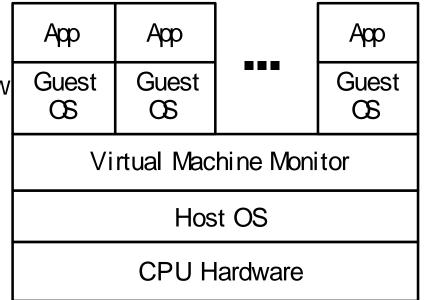
Lesson: End-to-End Principle

- "A lower layer of a system should support the widest possible variety of services and functions, so as to permit unanticipated applications" [Saltzer, Reed, Clark].
- Virtual Hardware Level (VHL) fundamental capabilities of low-level hardware.
- Session Level (SL) typical automation tasks of a single station.
- Network Level (NL) services of a network of ground stations.
- A virtual ground station (VGS)

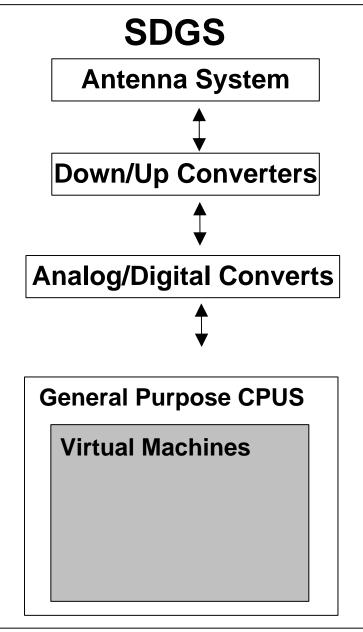


Composable GS

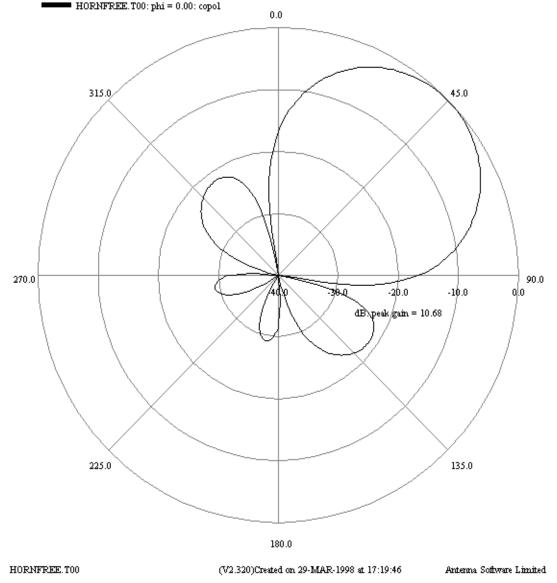
- Distributed GS components can be *composed* to form a *virtual ground station*.
 - A GS is decomposed into core components.
 - These are then assembled to form virtual ground station services.
 - Local teams for optimization, global teams for increased contacts.



Virtual Machines—A quick digression


- A host OS and hardware running multiple guest OS, the virtual machines.
 - To the guest, it appears to them as if they are the sole machine.
 - To the host, it just appears as a running process. Common place in IBM main frames for years, but now making their way into mainstream computing (ie Vmware, Xen).
- Uses of VMs
 - Guest OS free from the hardware it is running on. Consider HW upgrades now Just copy.
 - Facilitates backups and restorations.
 - Higher utilization of CPU resources.
 - Isolation, sandboxing, and security.
- What if a core GS service included the ability to run a VM?

Software Defined Ground Stations


- Reduction in custom hardware
 - Antennas, amplifiers, up/down converters, ADCs, DACs
- Move everything else into a VM
 - Bit sync, FEC, packetization.
 - TTC, misson data, etc.
- VMs are now:
 - Portable
 - Upgradable
 - Customizable
 - Etc.
- Check out gnuradio.org

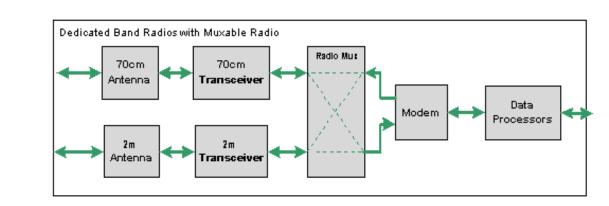
Lesson: Beamwidth!

- Sweet spot for tracking
 - Our experience: 20-60 degrees
- Lead the spacecraft, don't follow
- How do we hunt for the satellites?

http://www.maasdesign.co.uk/maas/qmwleo/img011.GIF

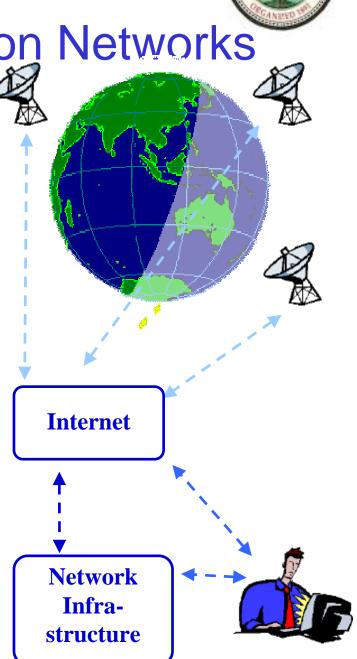
Lesson: Make State Available

- What state is your system in?
- View the GS as a satellite
 - Telemetry
 - Health management
 - Beacons
- Don't assume what operators will want!
- Make everything as simple as possible, but not simpler
 - Albert Einstein



Community Efforts

- Non-pointing antennas?
- A strategy for beacons—post launch, pre object ID
 - Power/beacon frequency trade-offs
 - CW beacons have been great!
 - Can we build a low cost receiving station (Niederstrasser)?
- A strategy for object identification
 - CalPoly's IRC is great!
 - Spread spectrum radio with a ground software-defined radio.
 - Beacon packet relays ala ANDE/RAFT
- Matrix switch between radios/modems
- Mass deployment of \$15k stations?



Next Steps – Ground Station Networks

- A federated ground station network (FGN)
 - 100's of stations under different administrative domains—universities.
 - Globally distributed facilities that can dynamically join and leave the federation.
 - Heterogeneous and networked via Internet.
- Ability to designate teams of stations
 - Teams collaborate on high level task (e.g. "track this spacecraft").
 - Global teams to increase access windows.
 - Local clustering to optimize ground stations and provide path and node redundancy.
- Prototype Mercury system
- Global Educational Network for Satellite Operations (GENSO)

The End