

Int’l Collaborator: Aoyama Gakuin University

UCI Satellite (UCISAT)UCI Satellite (UCISAT)
Mission: Launch UCISAT-1 into LEO to capture Earth
images with CMOS payload

Aoyama Gakuin University Team

UC Irvine Team

Subsystems:
• *Attitude Control (ADCS)
• Communications
• C&DH
• Payload (CMOS)
• Power
• Structures

UCI Satellite (UCISAT)UCI Satellite (UCISAT)

Specs:
• 1200 baud, 437.405 MHz downlink
• 1/2 wavelength dipole antenna
• 350g Aluminum structure (6061/7075)
• 5 triple-junction Emcore solar cells
• 2 3.7 V Li-Ion batteries
• Low-power magnetic torquer panels
• Thermistors for thermal monitoring

UCI Satellite (UCISAT)UCI Satellite (UCISAT)
Status:
• On-board communications

manufactured & tested
• Ground station assembled and

operational
• CMOS capturing and storing

images
• Power PCB layout on next rev
• ADCS and C&DH hardware

undergoing simulations/testing
before design is finalized

Launch:
Seeking launch aboard Dnepr III
in late 2008

UCISAT-1
Failure Recovery System
Presented by Juan Osuna

Recovery-Oriented Computing

» Murphy’s law: “Whatever can go wrong, will
go wrong”

» Software has not evolved to deal with our
world: Computers crash, servers go down,
data is lost…that is reality.

» Recovery Design Space:
Availability = MTTF / (MTTF + MTTR)
Decreasing MTTR increases system

availability

» Building systems that recover effectively
from failures may be more viable than aiming
for systems that never fail.

» Recovery is not immune to failures either!

UCISAT-1 Failure Recovery Subsystem

» Diagnostics
» Diagnostics will check for functionality

of subsystems (sensors, power subsystem,
camera etc)

» Crash recovery and firmware crash
detection
» Watchdog timer resets uC in case of a

firmware lock up
» Software crash incidence statistics kept in

microcontroller’s internal EEPROM

» On-orbit firmware updates
» Satellite capable of receiving firmware

updates
» Firmware update stored temporarily in

external memory

On-Orbit Firmware Updates

RX/TX

Serial
EEPROM

128KB

Application
Flash

Section
120KB

Boot Flash
Section

8KB

Internal
EEPROM

4KB

1

1

3

2 4

uC
Atmega128

On-Orbit Firmware Updates

» Status
» Successfully able to update

microcontroller firmware via serial port
» New firmware loaded using X-modem

protocol (temporary implementation for
testing purposes only)

» Testing performed
» Simulated power failures/glitches during

firmware download into
microcontroller’s internal flash

» Work to be done
» Firmware signature/checksum verification
» Implement immunity to power

failures/glitches and communication
disruptions during firmware upload into
external EEPROM

» Implement 2nd line of defense

UCISAT-1
Development Using
Programmable Logic Devices
Presented by Tom Wypych

Programmable Logic Devices

Overview
» Programmable logic devices are discrete

components which contain a collection of
gate elements

» Gate elements are arranged along network
grid lines, and can be dynamically connected
to create a user-specified circuit system upon
startup at the time of device start up

» Circuit connection map is stored, loaded,
and run by way of a system-programmed
firmware

Application
» Complexity of the logic design is limited only

by the abilities of the programmer
» For nearly every design there exists a device

well suited to perform the intended tasks
» The most helpful design using PLD capabilities is

the asynchronous parallel event processor

Programmable Logic Applications

PLDs can be used for three categories of tasks:

1. Ease of Development: A single PLD can be
substituted for many individual hardwired logic
components. Fewer system components means a
simpler hardware design.

2. High Speed Co-processing: A PLD can be used to to
interface with simpler microcontrollers to
perform intensive and repetitive DSP tasks. This
provides an efficient use of resources in
restrictive operating environments (such as a
CubeSat)

3. Custom End-to-End Device Solutions: PLDs can be
used to create custom hardware devices with a
minimum usage of microcontroller resources
and a minimum of system components

…or all three simultaneously!

PLD Coding

Entire firmware can be synthesized from
logic diagrams

PLD Coding

» Symbolic coding is easy for beginners, there
are limits to complexity from human error

» VHDL or Verilog can be used to tap the
abilities of a modern programming language
(function calls, element reusability, shared
state variables, iterative procedures)

output wire [7:0] C,
input wire [7:0] B,
input wire [7:0] A,
input wire clock

always @(posedge clock)
begin C = A + B;
end

PLD Case Examples

» Conventional design techniques requires
many devices statically configured at the
time of board and back plane design

» This process limits flexibility from a
completed design, and can stress the
limited resources of a small sat
environment

PLD Case Examples

» Many CubeSat designs employ
communications between multiple design
subsystems. Using an interfacing back plane
can allow for system-to-system
communications

» Conventional back planes require extensive
arbitration protocols or device
interfaces hardwired into the back plane
board

» Using a Programmable Logic Device new
data interfaces can be dynamically
created during development updates

» Dynamic interface reconfiguration allows
for errors in hardware design to be
corrected in software

Case Example: Back Plane

» Programmable Logic Devices can be used
to implement the design of high bandwidth
devices otherwise infeasible to implement
with conventional processors because of
resource limitations.

» A softmodem is just such an example; modem
devices require constant and intensive
processing attention infeasible with a
simple micro controller

» Using a PLD type device, the entire modem
can be implemented using nothing more
than the PLD and some analog conversion
hardware

PLD Case Examples

Case Example: Softmodem

PLD Case Examples

» New CPLD based design requires no knowledge of
interfacing protocols or modes of operation at
the time of hardware design

» Hardware components are consolidated and
synthesized within the CPLD (and generally perform
better than their discrete counterparts)

» The entire mode of operation of the CPLD can be
reprogrammed dynamically in seconds

Programmable Logic Device Usage

» Many offerings are available in the form of
PLDs, CPLDs, and FPGAs from Xilinx and Altera

» Devices can be programmed graphically or
using higher level code (Verilog or VHDL)

» From a hardware perspective, most small
devices are single chip solutions, minimally
requiring only power and data lines to your
other devices to operate

» Optionally, interfaces can be added to
program the device on the bench, or in-orbit
as a slave device to a microcontroller (like
Juan’s firmware updates example)

What does it take to use a Programmable
Logic Device?

Advisors: Professors Benjamin Villac, Derek
Dunn-Rankin,

and A.K. Hayashi

References / Acknowledgements
Referenc
es
The Berkeley/Stanford Recovery-Oriented Computing Project
http://roc.cs.berkeley.edu/

Procyon AVRlib
C-Language Function Library for Atmel AVR Processors
Written by Pascal Stang
http://hubbard.engr.scu.edu/embedded/avr/avrlib/

Open Cores
http://www.opencores.org
Acknowledgeme
nts

QUESTIONS?

