UNIVERSIDAD SERGIO ARBOLEDA

Antennas & Attitude Control of Libertad I. Paul Nuñez , César Valero

ASTRONOMICAL OBSERVATORY SCHOOL OF ENGINEERING

4th annual CubeSat Developers Workshop The Boeing Company Huntington Beach, CA.

Objectives:

Educational purpose.
Transmit telemetric data.
Test subsystems such as: Operating system.
Energy supply.
Attitude control.
Antenna deployment.

Criteria and considerations

- Type of information.
- Uplink frequency: VHF
 downlink UHF
- 700 Km (LEO)
- CubeSat restrictions (P-Pod)
- Directivity

UNIVERSIDAD SERGIO ARBOLEDA

Antennas I

Criteria and considerations

- Type of information.
- Uplink frequency: VHF
 downlink UHF
- 700 Km (LEO)
- CubeSat restrictions (P-Pod)
- Directivity

TX dipole Rx monopole

Dipole vs Monopole

TX dipole Rx dipole

UNIVERSIDAD SERGIO ARBOLEDA

Antennas II

Monopole with a finite ground plane

90° out of phase monopole

Rx monopole $1/8\lambda$ –

Tx monopole $1/8\lambda$

Ground Station

UHF: Yagui 30 elements

Rotor: Yaesu G5500-

VHF: yagui 14 elements-

Criteria and considerations

- Simple and Robust.
- Safe for us and other CubeSats
- Energy Restrictions
- Reliable

Justification

Antenna must be oriented because it is not omni directional. It must be "tangential" to the earth surface.

- •Active control system.
- •Gravitational gradient.
- •Use of a magnet.
- Magnet & Hysteresis rods

Active control system. Energy restrictions.
Gravitational gradient. Dimensions too small.
Use of a magnet. No dissipative force.
Magnet & Hysteresis rods

Hysteresis

- Phenomenon related to the magnetic memory of certain materials.
- Molecular "friction" acts as an energy dissipater.
- Hysteresis rods can act as rotation dampers

Result

Explicit solution for the damping time as a function of the initial angular velocity and the amount of hysteresis material.

Final remarks:

Produced a "ground-working" satellite.
Made small innovations in each subsystem.

•"Everything" is a payload.

"In theory, theory and practice are the same. In practice they are not." A. Einstein

UNIVERSIDAD SERGIO ARBOLEDA

TEAM:

 Raúl Joya. •Iván Luna. César Valero. Andrés Alfonso. Paul Nuñez. Miguel Ariza. Liza Pinzón. • Josiph Toscano. Mercy Corredor.

Special Thanks:

César Ocampo. Karla Vega. B. Twiggs. Andrew Kalman. Michael D'ortenzio Jordi Puig. Lori Brooks. Roland Coelho. Calpoly Team.

It Works!