

The Benefits and Uses of Very Small Spacecraft

4th Annual Cubesat Developer's Workshop Huntington Beach

April 20, 2007

S. Pete Worden Director, NASA Ames Research Center

NASA's Missions

Exploration

- Local space environment
- Return to the Moon
- Manned presence on Mars (future)

Science

- Understand the nature of the solar system and universe
- Near Earth Objects (NEO)
- Lunar sciences

ARC Small Spacecraft Division

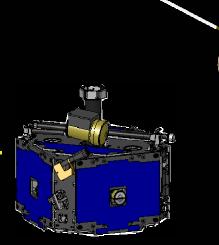
- Develop spacecraft and related systems to make access to space routine [<u>VENTURE CLASS</u>]
 - Common, reusable architectures
 - Place emphasis on payloads and science missions
- Secure and provide methods to access space reliably, frequently
 - Small space systems
 - Secondary payloads
- Reduce overall mission costs
 - Goal: Maintain or increase scientific and exploration return while reducing life cycle costs

Small, Low Cost, Fast Missions

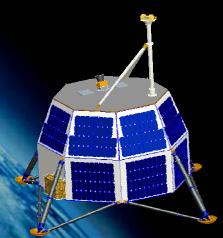
÷

Developing three efforts:

- Mission Design Center (MDC)
- Process development, toolsets
- Near term flight experiments demonstrating "What Is Possible Today"



Small Spacecraft Projects



- GeneSat and GeneBox (flown)
- Lunar Science Orbiter (LSO proposed)

 Lunar Crater Observation Sensing Satellite (LCROSS in development)

 Common Bus (lunar lander concept shown)


Benefits of Cubesats

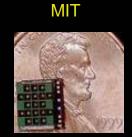
- Existing Cubesat standard(s)
 - Large, open development community
 - Wealth of ideas, approaches
 - Flight proven platform interfaces and accommodations
 - Low cost
 - Small size and mass
 - Secondary payload accommodations
 - Repeatable missions, multiple spacecraft possible
 - Affordable operations
- Expanding capabilities
 - Ideal test bed for new technologies
 - Wide variety of mission architectures supportable

CalPoly SLO PPOD

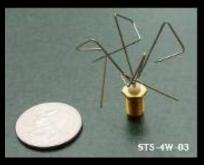
Science and Exploration Missions

- Space Biology
 - Radiation effects on biology
 - Lunar dust interactions
 - Effects of microgravity on biological systems
- Space Sciences
 - Near Earth Objects
- Astrobiology
 - Biological origins
 - Astrochemistry
 - Survey for habitable zones
- Space Physics
 - Heliophysics
 - Space weather
- Lunar Sciences

- Technology Demonstrations
 - Propulsion
 - Communications
 - Mass reduction MEMS and smaller
 - Autonomous operations
 - Formation flying/constellations
 - Novel space architectures tethers
 - Evolvable, reconfigurable satellites



LANL



Aerospace Corp

CalTech

NASA/ARC

Advanced Nanosats

Advanced Nanosat 2

- Advanced Multifunctional Materials

3-axis Stabilized, <10 arc-sec pointing

Delta-V >700 m/s

<4 kg bus mass

6 W payload power 1 kg payload capability

- Ultra-low power ADACS

Advanced NanoSat Program Goals:

- High Capability Achieve 80% capability of larger spacecraft (100-150 kg class)
- Low Recurring Costs ~\$ 1 M for bus
- Leverage Latest technology advancements & existing Ames Nanosat bus (GeneSat) for space validation of key sub-systems
- Enable Space Exploration Big science in a small, highly functional form factor

Advanced Nanosat I

High Data Rate Downlink (Gb/day) arc-sec pointing accuracy erformance Avionics Nano-thruster validation <5 kg bus i sion Opps

NASA Ames NanoSat In-Space Validation of Key Technologies

High Performance, Low **Power Computing**

Ultra light weight IMU

5.8 GHz Transceiver

NASA Ames NanoSat

In-Space Validation of Key Technologie

Nano-ACS Thrusters

High Capacity, Lightweight Batteries

Enables a Variety of Science Missions:

Precision Formation Flying Remote Imaging- Earth/Lunar Science Autonomous Satellite Maintenance Space Physics & Astrophysics **Exploration- Lunar, NEOs, Comets**

Advanced Nanosat X

- Delta-v > 300 m/s
- Sub-arc min pointing accuracy
- Ultra-low power commercial CPUs
- Micro/Nano based attitude position & tracking sensors
- Integrated GPS receiver/antenna

Sun Sensor

Mini Star Tracker

Wheels

12 Months

12-15 Months

Month 18 18-24 Months


CAPABILIT

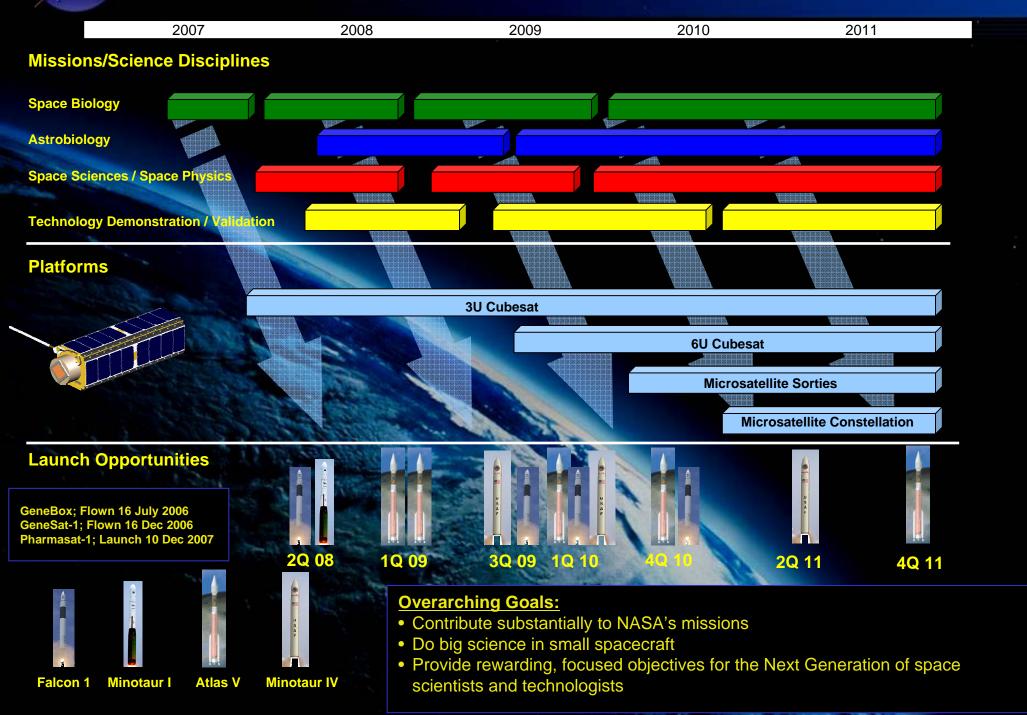
VANOSAT

- Payload packages on larger spacecraft
 - Flight heritage from Cubesat missions
 - Use Cubesat derived technologies to support other spacecraft missions
 - Lunar Orbiters
 - Lunar Landers

- Education and training
 - Space systems development and test
 - Systems Engineering
 - Operations

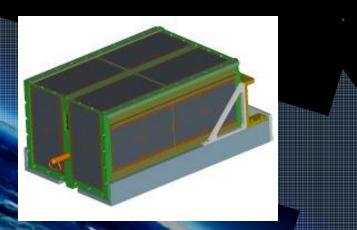
Santa Clara University

CalPoly SLO

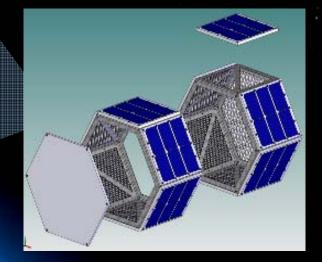

The Future of Cubesats

- Cubesats on every available launcher
 - Multiple opportunities per year
 - Launch supply >> Cubesat demand
- Multiple low cost NASA missions
 - Current focus is on 3U configuration
 - Other variations possible and under investigation
- Cubesat as a thesis or senior project at all the leading engineering universities
 - More solutions, more approaches, more ideas
 - Large familiarity with all things Cubesat
 - Common foundation for engineering education

Roadmap (notional)



3U?


The Future of Cubesats

• What is the next "Cubesat standard"?

6U / CU+/ 12U/?

University Nanosat?

- How can we advance the field
 - Provide 'Rides'?
 - Sponsor Contests?