ParkinsonSAT

RICKOVER HALL

CDR Bruninga

David Koeppel Matt Lovick James Paquette Brian Piggrem Jeff Robeson Kyle Vandegriff

ParkinsonSAT

 \$50k gift funds from Aerospace Corp.

Environmental sensor satellite data transponder

Satellite Launch
 Opportunities - TBD

This semester,
 Preliminary Design
 options --> SRR

Original Project Proposal

 Communicate with simple environmental sensors – buoys – deployed in the Chesapeake Bay or the Gulf Stream.

 Relay buoy position/status and telemetry about 2 to 4 times a day back to the Naval Academy.

Including Buoys elsewhere around the world as long as and internet linked ground station was in the footprint.

 Serve as a technology demonstrator for USNA auxiliary payloads such as basic satellite attitude control.

Proposed Mission

- Relay data from simple environmental sensors buoys in the Chesapeake Bay or oceans or onshore. Providing position/ status and telemetry about 2 to 4 times a day to the Internet.
- Including Buoys elsewhere around the world as long as Internet linked ground stations are in the footprint.
- Establish this channel/system as a global resource for other such experiments in the Amateur Satellite Service. Inspire other schools and universities to participate with additional low cost satellite transponders and buoy and sensor systems.
- Serve as a technology demonstrator for various spacecraft subsystems including basic attitude control, follow-ons to PCSAT experiments and other student projects such as the MIDN sensor.
- Support an Ocean Data Telemetry Microsat Link (ODTML) UHF transponder for DOD.

Low Cost Buoy System

Low Cost ~ \$800

Standard plumbing hardware

Off-the-shelf radios/modems

 Operates under FCC rules for Amateur Satellite Service

USNA Buoy

Global Ground Station Network

Piggrem

Micro Dosimeter (MIDN) Requirements

Auxiliary USNA Aerospace Student Project Payload

- Size 2.5" x 2.5" x 6"
- Weight .215 kg
- Power 1W (@ 5v)

Measures radiation dosage in human cell sized detectors

Ocean Data Telemetry Microsat Link, ODTML

 CONOPS: "Internet-Like" Services on Global Basis to Support Ocean Platform Monitoring (e.g., Free-Floating Buoys)
 SPACE SEGMENT:

- Hosted Aboard TacSat-3 and TacSat-4
- Autonomous "Router in the Sky" Allows User Commanding and Telemetry Receipt (Peer-to-Peer and Store/Forward)
- Compatible With Service ARGOS; >50,000 Bits/Day per Buoy; <0.1 Joule/Bit With Global Access and Position Determination
- UHF Uplink/Downlink With GMSK Modulation
- ◆GROUND SEGMENT: Low-Cost Portable and Fix **ODGMU**SpateliSegFrentde Virtual Internet Access

Concept of Operations

ONR ODTML Size, Weight and Power

- Size 10" X 10" X 1.8"
- Weight 3.7 kg
- Power

Peak (Watts)	40
Nominal (Watts)	9.5
Average (Watts)	12.5

Very conservative numbers, and massive design.

Project Variables

Requirement Options?
Launch Options?
Scale options?
Resource Limitations?

ParkinsonSAT Spiral Design Approach

ParkinsonSAT Link Budget is Known

Buoy to Satellite (VHF)

- Pr (90° el) = -101 dBm
- Pr (0° el) = -117 dBm

Satellite to Buoy (UHF)

- Pr (90° el) = -110 dBm
- Satellite to Buoy (VHF) aux TX
- Pr (90° el) = -101 dBm
- Pr (0° el) = -117 dBm

Satellite to Groundstation (UHF)
Pr (90° el) = -110 dBm
Pr (20° el) = -117 dBm

Satellite to Trackingstation (UHF) +8 dB

- Pr (90° el) = -102 dBm
- Pr (-0° el) = -117 dBm

Challenge: All using OMNI antennas

RX sensitivity -117 dBm

Sensor Buoy Baseline PCSAT2 User Plot 18 Apr 06

Sensor Buoy Baseline

GOES data collection platform container

Our RF prototype on Roof

Paquette, Robeson

Sensor Buoy Baseline

Number of Buoy Packets Received Per Day via PCSAT-1 and PCSAT2

Launch Opportunities

Free Flyer (comms orbit) - Desired

Attached Payload – OK

Space Shuttle – too low, no life...

- Available Launcher 5" picosat (minimum system)
- Requires a Propulsion system (H₂O₂ man-safe)

H₂/O₂ Man Safe Propulsion

The only practical way to get a student built propulsion system on board Space Shuttle. Inherently SAFE.

ParkinsonSAT H₂ /O₂ Micro-Thruster

Project:

Determine spacecraft mass then detta-V requirement Electrolysis requirements, rates, power required Valve avilability and drive requirements Water/gas separation mechanism (gortex?) Design-Build-Test engineering model Final conceptual design

Possible Future Project...

Mission Scale - Channel Capacity

Time Division Multiple Access (TDMA)

- Pure ALOHA 18% channel capacity
- CSMA ALOHA 36% channel capacity (not via sat)
- Slotted ALOHA 36% (uses GPS timing)

A B C D topology Pure Aloha	A B C D topology Slotted Aloha

Lovick

Mission Scale - Receivers

Full-duplex, Crossband

Simplex / In-band

Lovick

Mission Scale – Options

Minimum System:

> 32 Buoys/footprint

≻ 5" Picosat

Maximum system:
144 Buoys/footprint
Dual redundant
12" Microsat
AT 1200 BAUD
(2 x if 2 RX at 9600)

Mission Scale – Buoy Demographics

Global coverage for 3000 km radius footprints. One footprint is about 5% of area. . Overall global average dutycycle is about 20%.

Theoretical capacity: 2880 144/5% Expected capacity: 720 144/20%

Lovick

Architecture

ParkinsonSAT Functional Block Diagram

Small Satellite Structural Options

Primary factor is solar panel sizing

Next is Antenna requirements

Separation System

Attitude Control requirements

Koeppel

Solar Panel Options

Available Area
Efficiency
Cost
Attitude
Bus Voltage

Solar Cell Options

\$500 / Watt

PCSat Solar Panel Data

Koeppel

Emcor University Cell Options

6 cell 12v set

4 cell 8V set

ParkinsonSAT Shape / size Constraints

Vandegriff

Rhombicuboctahedron

12.1 in

ParkinsonSAT Shape / Size Constraints

		Surface			
	Solar	Max Power	Power	Volume	Area
Shape	Panels	(W)	(W)	(in^3)	(in^2)
5in Cube	<u>6</u>	3.49	2.03	<u>125</u>	<u>150</u>
7in Cube	12	7.04	4.06	343	294
9in Cube	<u>24</u>	<u>14.1</u>	8.13	729	486
Hexagonal	9	6.10	<u>1.67</u>	208.8	252
Octagonal	12	8.13	2.45	273.5	314
Rombicub octahedron	18	9.15	7.78	<u>1061</u>	<u>518</u>

ParkinsonSAT

Straw-man Options

7.5" Best Fit (minimum) Internals

ParkinsonSAT

Straw-man Designs

Sun Pointing

10" Option with 12 volt Bus

Sun Pointing

ParkinsonSAT

Full System Design

ParkinsonSAT Sun Pointing Design

 Full capacity mission transponders
 ODTML Transponder
 MIDN Payload
 ADCS advantage

ParkinsonSAT Internal Stack

Full capacity mission transponders
 ODTML Transponder
 MIDN Payload
 ADCS advantage

ParkinsonSAT TX-RX Tray

2 VHF receivers
1 or 2 XMTRS
MIDN Payload
Support Boards

Koeppel

TX-RX Tray

Representative Tray Designs

Layout favors +Z maximum moment of inertia

TNC / Battery Tray

Koeppel

Sun Pointing Attitude Control System

Attitude Vector

- ✓ Reduces solar panel cost, \$54,000 to \$9000.
- ✓ Pointing requirements are relaxed +/- 40 deg
- ✓ Attitude sensing via solar currents is sufficient
- ✓ Table derived magnetic field data
- ✓ High precision vector math not required

Sun Pointing Attitude Control System

Pointing requirements are relaxed +/- 40 deg
High precision vector math not required

Paquette

Magnetic Field Vector

Prof Ingle, Physics

Magnetic Torque Requirement

Worst Case Disturbance Torques: Gravity Gradient (~balanced MOI from RAFT model) T_a=6.30*10⁻²⁵ N-m ≈ 0 N-m • $T_a = 3^* \mu / (2^* r^3)^* |I_z - I_v|^* \sin(2^* \theta)$ Solar Radiation • T_{sp} =F*(C_{ps}-C_q) w/ F=F_s/C*A_s*(1+q)*cos(i) T_{sp}=1.03*10⁻⁷ N-m Aerodynamic Drag (Assumed 500 km) • $T_a = 1/2^* \rho^* C_D^* A^* V^{2*} (C_{oa} - C_o)$ T_a=1.48*10⁻⁶ N-m Total Disturbance Torque •T_d=1.58*10⁻⁶ N-m Dipole Needed to Cancel Torques (weakest Earth field at 500 km):

•D=T^d/B B=0.31*10⁻⁴ T D=0.051 A-m²

Magnetic Torque Coils

Torque Lab Experiment

- 200 turns #30
- 42 Ohms, 200 mA
- 1.3 Amp * M²
- 1.4 kg
- Results in 5 deg / sec

Suggests for ParkinsonSAT

- 200 turns #30
- 4 Amp * M²
- 14 kg
- Results in 1.5 deg / sec

Using 10% dutycycle pulsing still gives 10 dB margin

Paquette

Preliminary Mass Budget

Part	Mass (g)	Quantity	Total (g)
Structure			
Side Panel	696	4	2787
PCSAT Solar Panel	77	25	1940
Top/Bottom Panel	796	2	1592
EMCOR Solar Panel	24	24	57
Mounting Tray	669	6	4015
Battery Box	354	1	354
Comms			
VHF RX	78	4	313
Linear RX	78	1	78
VHF TX	80	1	80
UHF TX	80	2	161
Voice Module	10	1	10
TNC	204	2	409

Preliminary Mass Budget (cont)

	Payloads	Mass (g)) Quanti	ty Total (g)
MiDn		529	 1 	529
ODTML -	Transponder	3700	1	3700
ADCS				
x-coil		127	1	127
y-coil		127	1	127
z-coil		110	1	110
CPU		62	1	62
Power				
Battery		23	36	856
Overall T	otal			17.3 kg

Preliminary Required Power Budget

		Duty	Avg
4 KA 1 Z 1 A	(MA)	Cycle	(MA)
VHF FM TX1	500	15%	75
VHF FM TX2	500	15%	75
VHF FM RX1	30	100%	30
VHF FM RX2	30	100%	30
VHF FM RX3	30	100%	30
VHF FM RX4	30	100%	30
TNC1	30	100%	40
TNC2	30	100%	40
W/o			
MiDn/ODTML			
20% Reserve	40		40
Avg (mA)			390

	Current (mA)	Duty Cycle	Avg (mA)
With MiDn only	119	100%	119
20% Reserve (tot)	64		64
Avg(mA)			533
With MiDn and with	119	100%	119
ODTML transponder	1488	100%	1488
20% Reserve (tot)			361
Avg (mA)			2318

ParkinsonSAT Battery Tests

For a typical COMM orbit at 500 miles, satellite will require 630 mAh. Based on 20% DoD this requires either 27 AA's, 12 C's or 7 D cell NiCads.

Dual Voltage Bus for best efficiency / simplicity

Launcher Separation Devices

CPU Design

Adding CPU to basic PCSAT type design for:

- Collect and transmit whole orbit data telemetry
- Event scheduler
- Data logger
- Attitude control system
- Store and Forward

Includes...

-Serial port, 9600 or 1200 baud -8-bit parallel I/O -5 or more analog inputs

Development Board

Prototype Buoy Design

 Design aspects similar to spacecraft:

- Power System (EPS) (low-power & efficiency)
- Communications System

(link budget)

- Sensor system (collaborating with Oceanography)
- Telemetry System
- Antenna System

(antenna patterns)

Structure
 Collaborating with Hydro Lab

Sensor Buoy Baseline

Buoy Power Budget

Energizer 6V Lantern Battery (No. 529)	Voltage (V)	Resistance (Ω)	Current (mA)	Time On (h)	Capacity (mAh/day)	Published Battery Capactity (Ah)	Battery Life (days)
	6	110	54.55	2.4	130.91	26	199
Component	Current (mA)	Time On (min/hr)	Required Energy (mAm/h)	Required Energy (mAh/Day)	Total Energy (mAh/Day)	Published Battery Capactity (Ah)	Battery Life (days)
Garmin GPS-18	110	2	220	88	128	26	203
Transmitter	500	0.2	100	40			

* 2 batteries required to get 12v BOL and 7v EOL

Buoy Power Budget

Buoy Logic Timing Design

Prescribed Timing Requirements for Bay Mission

- GPS 1.4 minutes on every 23.4 minutes
- Transmits every 10 minutes
- TNC 11 seconds on every 11 minutes

Prescribed Timing Requirements for Ocean Mission

- TNC 22 seconds on every 2.9 minutes
- GPS 1.4 minutes every 46.9 minutes
- Transmits every 2.9 minutes

Lovick

Buoy Logic Timing Hardware Integration Astable Operating 555 Timer (Clock Input) 54HC4040 12-Stage Binary Ripple Counter Triple 3-Input Positive Nand Gate Chip Quadruple 2-Input Positive Nand Gate Chip

10 Channel Telemetry Multiplexer for the KPC -3

Buoy Telemetry

Battery Volts Air Temp Water Temp Sun luminosity Conductivity Flooding

ParkinsonSAT Thermister Calibration Curve

Raft Temperature Data from Heat Chamber and Freezer

Paquette

ParkinsonSAT 5" Option microgravity Separation Test

March 30th – April 8th ("Test of Opportunity")

Robeson

Test 5" cubesat separation system

0

0

Questions?

Alternating ISS Pass Geometries for US Naval Academy at 39°N latitude

Two excellent overhead passes per day (2,6) Four OK passes up to 10 deg (1,3,5,7). This pattern occurs every other day.

Four good 30 degree passes per day (2,3,6,7). Four very low <5 deg passes per day (1,4,5,8). Pattern occurs every other day. WB4APR

PCSat2 Operations

- Daily Antenna Pointing
- Low Power Shutdown
- Soyuz Docking
- EVA's
 SuitSAT deployment

