

THE SFL NANDSATELLITE LAUNCH SERVICE

Building Canada's Future In Space 👋

Daniel D. Kekez, Robert E. Zee, Freddy M. Pranajaya

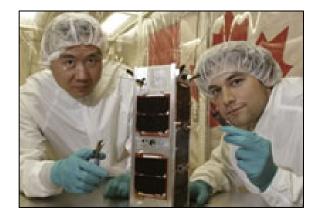
Space Flight Laboratory University of Toronto Institute for Aerospace Studies

OVERVIEW

- The Space Flight Laboratory (SFL) at the University of Toronto Institute for Aerospace Studies (UTIAS)
- Nanosatellite Launch Service (NLS)
 - Launches to Date
- XPOD Separation System
 - Heritage
 - Qualification
- Future NLS Payload Packages
 - Partners and Spacecraft Complement
 - System outline and tentative ICD

Launch Program

UTIAS SPACE FLIGHT LAB


- Part of University of Toronto Institute for Aerospace Studies
 - M.A.Sc. curriculum: spacecraft system/subsystem design from concept to operational
 - Ph.D. curriculum: research on spacecraft system/subsystem
 - Full-time experienced staff to support students
 - 10 students and 6 staff

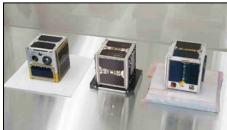
UTIAS/SFL RESEARCH PROJECTS

- Canadian Advanced Nanospace (CanX) Program: State-of-the-art research with nanosatellites (<10kg)
- Nanosatellite Launch System (NLS) Program: Regular launches for CanX spacecraft (and others)
- Radiation Test Program
- Microsatellite Projects (<100kg) to use proven technologies

CANX MISSION HORIZON

- Precise Formation Flying •

 - CanX-4/5 (2008-2009) Status: PDR in June 2006
 - CanX-2 (Q2 2007) Status: Final Qual. in Summer 2006
- BRIght Target Explorer (BRITE) Constellation
 - Space Astronomy with four nanosatellites
 - CanX-3A, 3B, 3C, 3D (2008-2009)
 - UniBRITE (U Vienna) Status: PDR in June 2006
 - BRITE-Austria (TUG) Status: PDR in June 2006
 - BRITE-Toronto Status: CSA Proposal Under Review
 - BRITE-Montreal Status: CSA Proposal Under Review
- Multi-Mission (or "Generic") Nanosatellite Bus
 - Use same bus for CanX-3A/B/C/D,4,5

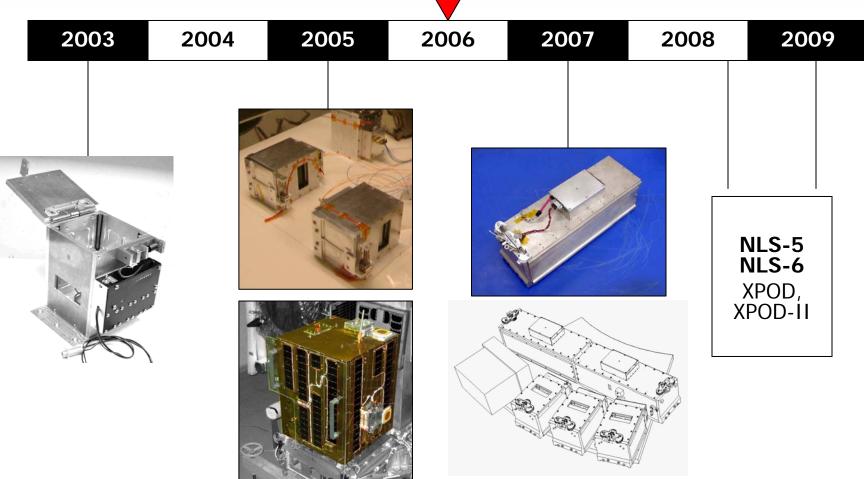

- Primary Objective:
 - Access to regularly scheduled launch in support of the CanX program and UTIAS/SFL education curriculum
- Secondary Objectives:
 - Cost sharing with launch partners through launching a small group (4-5) of spacecraft
 - Small number of participants simplifies LV integration, launch campaign logistics, post launch operations, schedule risks, therefore reducing the overall risk to all participants
- Nanosatellite Separation Systems
 - Flight-proven XPOD separation systems

LAUNCHES TO DATE

- NLS-1: Rockot Launcher, June 20, 2003 P-POD Mk. I Separation System
 - CanX-1 UTIAS Space Flight Laboratory, Canada
 - **DTUsat** Danish Technical University, Denmark
 - **AAUSat** University of Aalborg, Denmark
- NLS-2: Rockot Launcher, June 30, 2003 P-POD Mk. I Separation System
 - QuakeSat Stanford University, United States
- NLS-3: Cosmos-3M, October 25, 3006
 T-POD 1.7 Separation System in SSETI-Express
 - NCUBE-2 Norwegian Space Centre, Norway
 - **UWE-1** University of Würzburg, Germany
 - XI-V University of Tokyo, Japan

NLS-3 LESSONS LEARNED

- Redundant firing system
 - Tolerant to single failures
- Sensors
 - Door sensor: indicates successful activation
 - Pusher-plate sensor: indicates successful ejection
- Reliable components
 - Improved screening and testing of critical parts
 - High-performance materials
- Extensive system- and subsystem-level testing
- One spacecraft per separation system
 - Minimizes overall risk



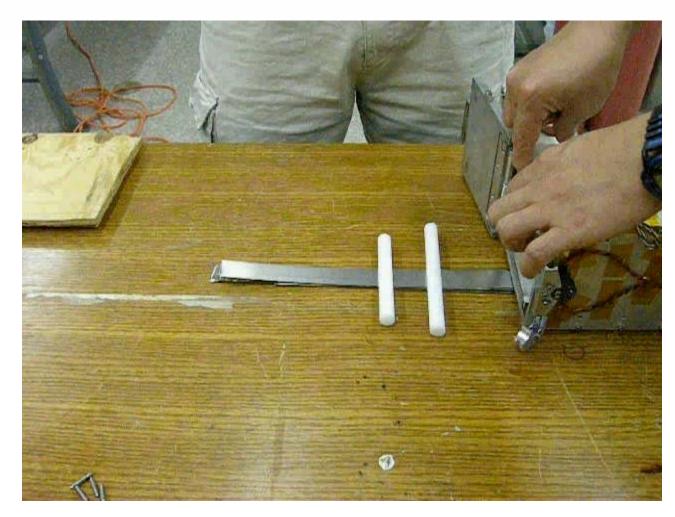
XPOD DEVELOPMENT

Flight-proven separation system

- 2003: T-POD
 - Original design by U. of Tokyo, flown on Rockot
- 2005: T-POD 1.7
 - UTIAS/SFL and U.of Tokyo joint design; three flown on ESA SSETI-Express/Cosmos-3M
- 2006: XPOD (formerly known as T-POD II)
 - Passed vibration and thermal vacuum qualification; five to be flown (three different sizes) on NLS-4 in 2007
- 2008/2009: XPOD-II
 - Under development for spacecraft of arbitrary dimensions, up to ~12kg, with fixed appendages; five planned for flights in 2008 and 2009

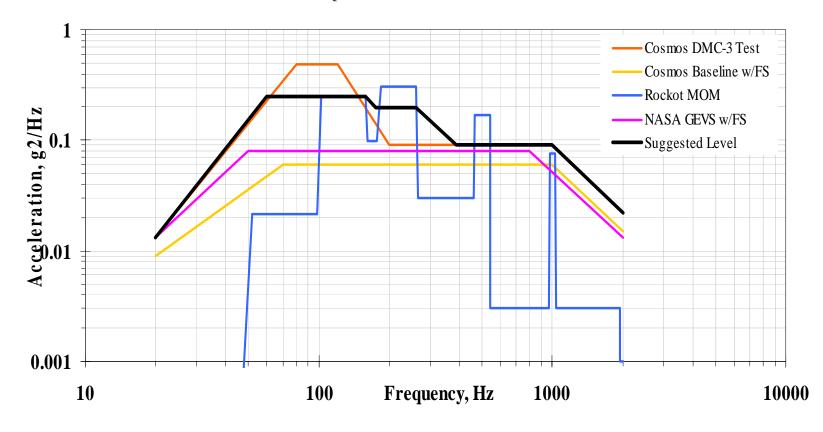
NLS-X Launch Program

XPOD FEATURES


- Scalable design for spacecraft of arbitrary dimensions up to 5 kg; one XPOD per S/C
- Closing Mechanism
 - In-house design
 - Implemented features to minimize the risk of jamming
- Redundant firing system
- Door and pusher plate sensors
- Improved spacecraft contacts
- High performance materials

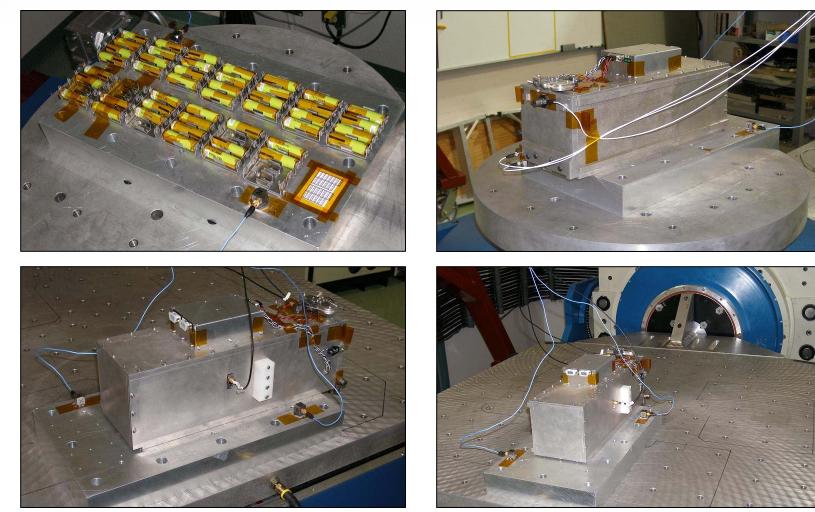
• Capable of full S/C deployment test in 1-g

XPOD DEPLOYMENT TEST



XPOD QUALIFICATION

- Approach to Vibration Testing:
 - Worst case combined vibration load from multiple LVs: Rockot, Dnepr, Cosmos-3M, NASA GEVS.
 - 1.5 Safety Factor
- Vibration Test Campaign:
 - Sine-Burst: 14.9-15.1Hz @ 9.75g
 - Sine-Sweep: 5-10Hz @ 0.8g, 10-100Hz @ 0.8-3.0g
 - Random Vibration: 13 g_{RMS}

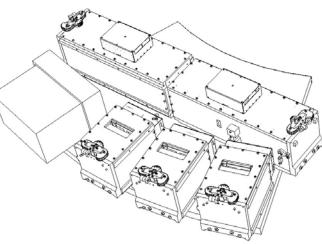

Random Vibration Spectrum

XPOD QUALIFICATION

13 August 2006

NLS-X Launch Program

XPOD QUALIFICATION


- Approach to Thermal Vacuum Testing
 - Operational testing at worst case temperature condition
 - Min operational temperature -35°C
 - Max operational temperature +65°C
- Thermal Vacuum
 - Operational Testing at -35°C and +65°C
 - 10⁻⁵ Torr or better
 - All tests show consistent performance under thermal vacuum conditions, both before and after qualification vibe

NLS-4 PAYLOAD PACKAGE

- Lead Partner:
 - UTIAS Space Flight Laboratory Canada Spacecraft: CanX-2
- Launch Partners:
 - Aalborg University, Denmark
 - Tokyo Institute of Technology, Japan
 - University of Aachen, Germany
 - Technical University Delft, The Netherlands Delf
 - Nihon University, Japan
- Separation systems: XPOD (5) and Cute-SS (1)

SEEDS

AAUSat-II Cute-1.7 + APD II COMPASS-1 Delfi-C3

FUTURE LAUNCHES

- NLS-5 in 2008/9
 - UniBRITE (CanX-3A), CanX-4, CanX-5
 - Launch Vehicle: TBD
- NLS-6 in 2008/9
 - BRITE-Austria (CanX-3B)
 - Launch Vehicle: TBD, would like to place CanX-3B into an orbit that is different than CanX-3A
- Additional launch partners are welcome
 - Choice of XPOD or XPOD-II
 - Each spacecraft to have its own dedicated separation system

WORKING TOGETHER

BUILDING CANADA'S FUTURE IN SPACE

PARTNERS

Sponsors

NLS-X Launch Program

BACK-UP SLIDES

- On Dec 21, 56 days after launch, NORAD tracked a separate object moving away from SSETI-Express
- Analysis based on the separation dynamics suggest that this object might be N-Cube 2
- What happened?
 - The object was deployed late
 - Impossible to determine what exactly happened due to absence of telemetry

NLS 3: WHAT HAPPENED TO N-CUBE 2

- Hypothesis:
 - <u>Connection failure</u>
 T-POD not receiving separation signal, therefore was not activated.
 - <u>Electrical failure in the T-POD</u>
 T-POD receives the separation signal, but failed to activate
 - <u>Mechanical failure in the T-POD</u>
 T-POD activates, but failed to complete ejection
 - <u>Ejection failure due to external factors</u>
 T-POD activates, but failed to complete ejection due to factors external to the T-POD