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Agenda

! Introduction to GNC
! Terminology
! ACS/GNC System Architectures
! Focus on navigation (sensing)

! Attitude Determination
! SIAD + Gyros
! Earth Tracker + Sun Sensor + Gyros

! Ephemeris Determination
! Onboard 

! GPS
! Transponder

! Ground Tracking
! Optical
! Laser
! Radar
! Com Link

! Integrated 6-DOF Navigation
! MANS
! X-Nav
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Industry Terminology

! Attitude Determination and Control Subsystem (ADCS or ACS)
! Active stabilization or feedback control of satellite attitude relative to 

inertial space or planetary body
! Guidance Navigation and Control (GNC)

! Typically used in the missile and submarine world, where autonomous 
systems must control to a position trajectory in addition to attitude
! Usually 6-DOF
! Sometimes 6-DOF sensing and 4-DOF actuation

! Turn and burn, R/P/Y+V for airplanes, nonholonomic dynamics equations 

! Reaction Control System (RCS)
! Maintains prescribed attitude during thrusting or maneuvering
! Often associated with GNC or NASA shuttle missions

! Orbital Operations (OO)
! Ground commanding of ACS and !V to accomplish desired ground 

coverage and phasing
! Ground tracking of satellite ephemeris
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Satellite GNC Options

! Sensors
! Inertial Measurement Unit (IMU) – mechanical or optical gyros and/or 

accelerometers
! Star Tracker Assembly (STA) – (q-out vs. camera)
! Coarse and Fine Sun Sensors (CSS, FSS)
! Three-Axis Magnetometer (TAM)
! Earth Horizon Sensors
! GPS or ground tracking (laser, RF, optical) for ephemeris

! Actuators
! Reaction Wheel Assemblies (RWA) or Control Moment Gyros (CMG)
! Magnetic Torquers (MTA)
! Propulsion—Chemical, Electrical (Ion, Hall Effect, Plasma), or Digital 
! Movable masses or gravity gradient boom
! Solar or aerodynamic vanes

! Architectures
! Spin stabilized
! Dual spin stabilized
! 3-axis stabilized (zero momentum) 
! Gravity Gradient
! 4-DOF (“Turn and Burn”) vs. 5 or 6-DOF

! Attitude:  sun, inertial, nadir, relative to other satellites
! Orbit: LEO, MEO, HEO, GTO, GEO, L1/L2, Interplanetary, Deep Space
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ACS System Examples
! Spin Stabilized (Hughes Patent)

! Accurate pointing without RWA (nutation damper maintains passive stability about spin axis)
! Improved SRP symmetry, but reduced solar power and communications efficiency
! Example:  Syncom

! Dual Spin
! Spin stabilized body with despun payload/antennae platform
! Improved communications efficiency, but increased mechanism complexity
! Example:  Tacsat

! Gravity Gradient
! Differential in gravitation and centripetal acceleration pulls “long” axis down
! Robust, no expendables, simple/cheap, passively stable, low accuracy (1 deg typical), 2-DOF
! Example:  JIMO, GOES II

! Magnetic or Aero/Solar Control
! Low accuracy, simple, low ACS mass.  Passive or active. 

! 3-Axis Stabilized
! Increased hardware (RWAs or CMGs) and ACS complexity, but greater flexibility and pointing 

accuracy
! Maximum solar power and communications efficiency
! Examples:  most modern satellites
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Feedback Control Basics

! Trajectory planners (“command generators”, or feed-forward) 
are often neglected because feedback is so robust
! Trajectory planners can dramatically reduce controller actuation, 

improve controller accuracy, and reduce unwanted dynamics excitation
! State estimation can add precision, but isn’t required 

eliminated for many systems

(attitude determination, filtering)
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Notice the 3 software elements:
Guidance, Navigation, and Control
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Some Example GNC Challenges

! Sensor/actuator alignment and coordinate transformations
! Attitude estimation

! Sun or Earth gives 2-DOF each--must be combined to get 3-DOF solution
! “Lost in Space” problem for STA star catalog searching
! Maximum STA rate due to blur and CCD sensitivity
! IMU gives high bandwidth inertial solution, but bias & drift must be compensated 

with inertial sensors
! KF adds persistence (“time averaging”) and sensor fusion/blending utilizing 

dynamics model to provide large improvement in accuracy without sacrificing 
bandwidth

! Actuated appendage dynamics
! Reaction moments (motor + rotor momentum) significant for complex S/C

! Solar array, antennae, payload elastic dynamics
! Round-off error (truncation)
! Rigid body gyroscopic effects
! Instability during mode transitions or unplanned events
! Fault management response (the IR in FDIR)
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Thruster Misalignment and CG Migration

Displacement
Error

EOL CG Location

BOL CG Location

Nominal CG Location

Centerline

Nominal
Cant Angle

Angular
Misalignment

! As fuel is expended CG migrates 
downward
! CG location calculated after each major 

mission phase (burn)
! Pitch/Yaw Torque Components

! Angular misalignment
! Lateral misalignment
! Thrust mismatch

! Roll Torque Components
! Angular misalignment

! !V thruster configurations can employ 
multiple “main engines” or a single 
thruster

! Reaction torque counteracted by the 
ACS or RCS system

! Bladdered tanks push CG to one side
! “Blowdown” tanks waste fuel and have 

sloshing

Thrust Error
Nominal
Displacement
(x)
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Navigation is Paramount

! Navigation accuracy determines control accuracy
! ACS seldom limited by actuator accuracy

! Creative control techniques can usually overcome most actuator 
quantization and repeatability techniques

! If you can’t sense your attitude accurately, no innovative control law  
can ever produce a system with accurate control

! Optimal estimators (Kalman Filters) can improve upon raw 
sensor accuracy
! Utilize knowledge of dynamics to “average” measurements over 

time despite the changing vehicle state (attitude + position)
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Navigation Onboard or by Ground

! Attitude navigation usually happens onboard for commercial 
and science satellites
! Satellite must be able to point communications antennae to accomplish 

high bandwidth link to ground
! Not usually an issue for nanosats using omnidirectional antennae

! Satellite can maintain high bandwidth control without taxing 
communication link to relay sensor data

! Ground tracking of satellite attitude without onboard sensors is usually 
impossible or extremely inaccurate

! Ephemeris (positioning) navigation generally utilizes ground 
stations
! Various ground-based sensors used

! Communications link—bearing and/or velocity (Doppler)
! Optical tracking—bearing only
! Laser tracking—range and/or bearing
! Radar—range and/or bearing

! Recent advances in GPS radiation hardening have begun to make 
onboard ephemeris navigation possible
! Other autonomous onboard systems have been proven (MANS)
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Sun Sensors

! Coarse sun sensors (CSS) 
! Can be as simple as a single photodiode beneath a slit
! Typically have a FOV of >150° in 2 axes and <0.1° precision
! No power required, low mass

! Digital sun sensors or fine sun sensors (FSS) 
! Employ a vernier slit pattern or linear photodiode array for more 

precise sun angle measurement
! Typically have a FOV of >150° in 2 axes and <0.02° precision
! Little or no power required, low mass

! For nanosats, can you use the differential power 
between several fixed solar panels to estimate the 
sun line?
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Star Trackers

! The heart of a stellar inertial attitude determination system 
(SIAD) is the accuracy of the inertial update from the star 
tracker
! No matter how precise the gyros, accuracy of bias updates from STA 

determines ultimate pointing accuracy
! STAs generally have 2 modes

! “Lost In Space”
! Star catalog searching is analogous to least squares fitting or Google’s index 

searching
! Star pairs, triad, or quad geometries are sometimes used as sort keys 

! Attitude tracking
! Incremental motion of star field tracked

! Some STAs push the envelope for high rate performance by 
incorporating additional modes
! Rate limit driven by integration period and update rate of camera

! Update rate limited by CCD sensitivity
! Smearing and streaking of star images due to vehicle tumbling

! Some produce an attitude quaternion (“q-out”) others merely 
output the x-y positions of stars
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Star Catalog Searching

! Just like Google, indexing & sorting is the key
! Reduces processing bandwidth by being smart about search
! Reduces search time

Unsorted Star Pair Index
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?
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! How many pairs are enough? N2 ?
! How should it be sorted?
! How many connections should be 

considered? 2 (segment)? 3 (triangle)?

… … … …

… … … …



Copyright 2006 Northrop Grumman Corporation
13 5/26/2006 9:35 AM

Scanning Earth Horizon Sensors

! IR radiation reflected/emitted from clouds at limb of 
Earth causes an attitude estimate error of as much 
as 0.15°

! Typically used for Geosynchronous (GEO) satellites 
pointed at the Earth with moderate accuracy.
! For low Earth orbit (LEO) satellites, scan angle 

required usually becomes prohibitive (massive, 
expensive)

! Earth Sensors scan the Earth using mirrors to direct 
infrared (IR) light from the Earth to a bolometer (IR 
detector diodes)

! Earth limb located at 4 points (the ends of the chord 
scans)

! Closed form solutions for a circle’s center possible 
from the chord lengths and 4 end coordinates.

! Also provides approximate altitude estimate (too 
inaccurate for ephemeris determination)
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Ephemeris Determination

! Ephemeris Determination
! Onboard 

! GPS – only recently became ubiquitous for satellite navigation
! Earth Transponders/Beacons – not generally employed
! MANS – Microcosm Autonomous Navigation System 
! X-Nav – Naval stellar navigation applied to satellites using pulsars

! Ground Tracking
! Radio Frequency (RF)

! Deep Space Network (DSN) – 3-DOF using multiple ground stations to triangulate
! Communications link can provide range and/or range rate (Doppler) estimation (1-

DOF or 2-DOF for a single ground station)
! Bearing measurements are generally very inaccurate

! Optical
! Amateurs regularly track the bearing to satellites with off the shelf telescopes (2-

DOF bearing measurements for a single ground station)
! Laser

! Provide range and accurate bearing for full 3-DOF solution
! Radar

! Provide range and relatively accurate bearing for full 3-DOF solution
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GPS

! Modern satellites often include massive GPS 
receivers (GPSRs) and antennas for onboard 
navigation in LEO

! GPS signals are not designed for use above LEO 
altitudes
! Kalman filtering techniques and optimized antennas make GPS 

at GEO possible

! If only cell phones could fly!
! Modern cellphone capabilities would make excellent CubeSats if 

they could survive the environment
! Radio transceiver – ground communication link?
! GPS receiver – ephemeris navigation?
! Camera – star camera?
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MANS  

! Two Scanning IR Earth Sensors
! Simultaneously scan for the most 

obvious celestial references:
! Earth horizon
! Sun centroid
! Moon disc edges

! Triangulation provides both attitude 
and ephemeris

! Closed form solution and Kalman 
Filtered solution

! MANS = Microcosm Autonomous 
Navigation System

! First demonstrated on STEP0 in 
early 90’s
! Determined ephemeris to 150 m 

precision
! Determined attitude to < 0.01 deg.
! Sponsored by Air Force Phillips 

Laboratory
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Y
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120°

120°
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X-Ray Navigation  

X

Z

An X-Ray detector on a gimbal will 
search the sky for X-Ray pulsars and 
use the phase of those pulses to 
precisely estimate both range, and 
bearing to each pulsar. 

This technique may allow full 7-DOF (position + attitude + time) 
navigation without any dependence on man-made sources

Sponsored by the Naval Research Laboratory (NRL)

When sailors that operate satellites 
learn about pulsars they think of them 
as a large array of extremely precise 
and fast lighthouses!
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Ground Tracking

! Multiple measurements from a single ground station can 
be used to determine ephemeris if they are correlated 
over time
! Can be batch processed (post-processed)
! Can be Kalman filtered in real time
! Error statistics can be gleaned from overlapping batches

Y

Z
For range and bearing 
measurement imagine 
a pencil with the 
eraser fixed firmly at 
the ground station 
(with a glob of clay?) 
and the satellite 
allowed to rotate/pivot 
at the tip.

For bearing 
measurements 
imagine a loose and 
well-greased 
telescoping car 
antennae with the 
base fixed firmly at 
the ground station.

For range 
measurements 
imagine a string 
pulled taught between 
the ground station 
and the satellite.

Using these analogies, can you get a feeling for how many 
measurements it would take to “fix” a satellite in space?  Can you get 
a feel for geometric dilution of precision (GDOP)?



Copyright 2006 Northrop Grumman Corporation
19 5/26/2006 9:35 AM

Passive or Semi-Passive Stabilization 

! Spin stabilization
! Dual-Spin stabilization
! Gravity gradient
! Aerodynamic (badminton “shuttle cock” effect)
! Gyrocompassing
! Magnetic

! Can you think of ways that passive stabilization 
techniques can be combined with active elements to 
accomplish 3-axis stabilization?
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