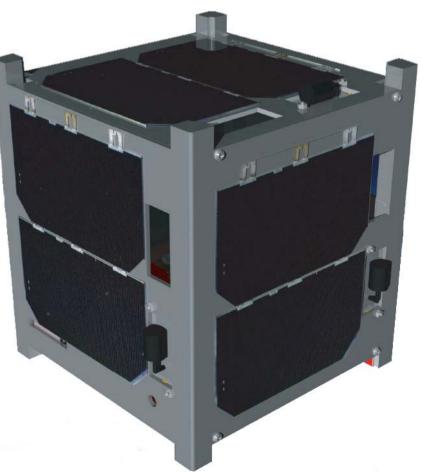
Auburn University


Student Space Program

AubieSat-1: Auburn's First Student–Built Satellite for Scientific Experiments in Space

Faculty-advisor: Dr. J. M. Wersinger (Department of Physics)

 $Mentor: Mr. \ Cook \ ({\tt Former \ Lockheed \ Engineer})$

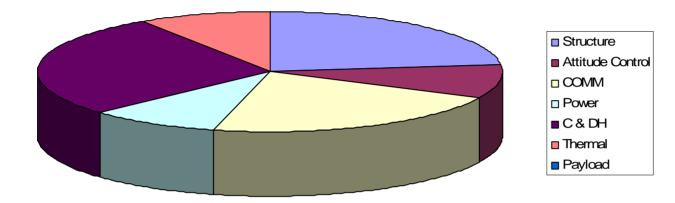
Presenter: Eric Grimes

Mission

 \clubsuit Mission statement:

- \succ To build a satellite for scientific experiments in space.
- Primary objective:

➤ To successfully communicate data collected in space to the ground

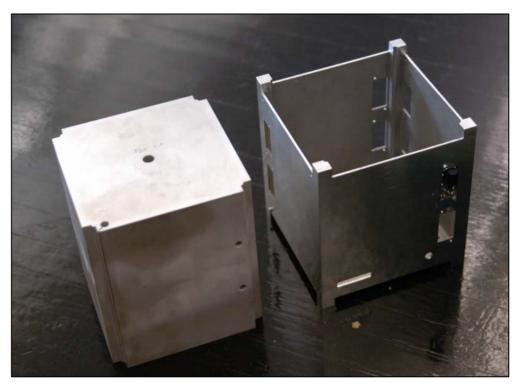

Secondary objectives:

➤ To successfully record measurements from a new ultraviolet (UV) sensor

 \succ To provide a documentation architecture for future small satellites

Cost Budget

Subsystem	Current Cost (USD\$)	
Structure	\$750.00	
Attitude Control	\$300.00	
Communications	\$700.00	
Power	\$300.00	
Command & Data Handling	\$900.00	
Thermal	\$300.00	
Payload	\$0	
Total	X 30% = \$6500.00	

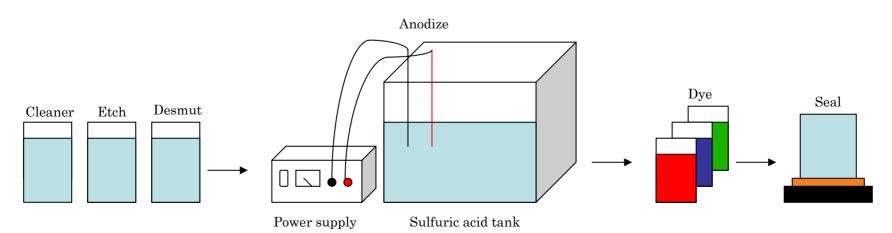

Structure

✤ Requirements:

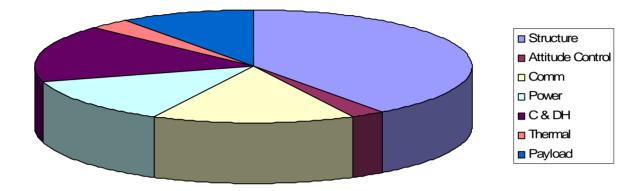
- Dimensions: 10cm x 10cm x 10cm
- ≻ Target mass: 1.00 kg

✤ Hard anodized 7075 Aluminum machined from solid block using EDM (Electrical Discharge Machining)

- Advantage: Structurally sound
- Disadvantage: Expensive
- \clubsuit Scotchweld 2216 epoxy for
- attaching solar cells
- ✤ Antennas made with Nitinol



Anodizing Process

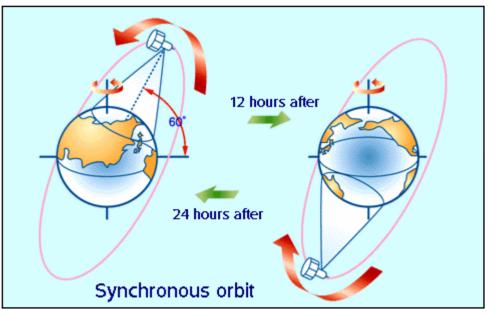

✤ The problem: The 7075 Aluminum material is extremely vulnerable to the harsh environment of space

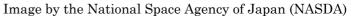
- ✤ The solution: Anodize the structure
- ✤ What is anodizing?
 - ➢ Electrochemical process that thickens and toughens the naturally occurring protective aluminum oxide
- ✤ How exactly does it help?
 - \succ Strengthens the aluminum
 - \succ Prevents corrosion and abrasion

Mass Budget

Subsystem	Allocated Mass (g)	Current Mass (g)
Structure	400	378
Attitude Control	75	25
Communications	150	46.5
Power	130	102
Command & Data Handling	165	60
Thermal	30	15
Payload	50	~10
Total	1000	636

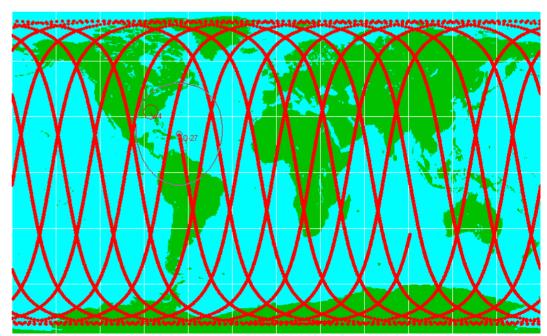
MicroGravity Test




- ✤ First CubeSat to be microgravity tested
- ♦ Test scheduled for May 3^{rd} May 13^{th}
- ✤ MEMS accelerometers, gyros and video analysis to study the deployment of cubes for a range of configurations

Orbital Parameters

- ✤ Low Earth Orbit (LEO)
- Sun-synchronous
- ✤ Inclination: 98°
- ✤ Altitude: 820 km
- ✤ Orbit period: 98 minutes
- ✤ Advantage: Steady solar energy supply
- ✤ Disadvantage: South Atlantic Anomaly



Orbital Simulation

- WinOrbit tracking software
- ♦ Simulation on an existing satellite (AMRAD-OSCAR-27) with similar orbital parameters:
 - ➢ Low Earth Orbit
 - \succ Sun-synchronous
 - ➢ Inclination: 98°
 - ➢ Altitude: 800 km

Path of the AO-27 over 24 hours $% \left(AO^{2}\right) =0$

Simulation, cont.

April 21			April 22		
AOS	LOS	Access time	AOS	LOS	Access time
1:18:00 AM	1:33:00 AM	15 min	12:50:00AM	1:05:00 AM	15 min
3:01:00 AM	3:10:00 AM	9 min	2:31:00 AM	2:44:00 AM	13 min
12:01:00 PM	12:05:00 PM	4 min	1:09:00 PM	1:23:00 PM	14 min
1:36:00 PM	1:51:00 PM	15 min	2:48:00 PM	3:02:00 PM	14 min
3:16:99 PM	3:29:00 PM	13 min			
11:16:00 PM	11:23:00 PM	7 min			
	Total:	56 min		Total:	56 min
April 23			April 24		
April 23 AOS	LOS	Access time	April 24 AOS	LOS	Access time
-	LOS 12:37:00 AM	Access time 13 min		LOS 1:50:00 AM	Access time 15 min
AOS			AOS		
AOS 12:24:00 AM	12:37:00 AM	13 min	AOS 1:35:00 AM	1:50:00 AM	15 min
AOS 12:24:00 AM 2:03:00 AM	12:37:00 AM 2:17:00 AM	13 min 14 min	AOS 1:35:00 AM 3:20:00 AM	1:50:00 AM 3:26:00 AM	15 min 6 min
AOS 12:24:00 AM 2:03:00 AM 12:42:00 PM	12:37:00 AM 2:17:00 AM 12:54:00 PM	13 min 14 min 13 min	AOS 1:35:00 AM 3:20:00 AM 12:16:00 PM	1:50:00 AM 3:26:00 AM 12:25:00 PM	15 min 6 min 9 min
AOS 12:24:00 AM 2:03:00 AM 12:42:00 PM 2:21:00 PM	12:37:00 AM 2:17:00 AM 12:54:00 PM 2:36:00 PM	13 min 14 min 13 min 15 min	AOS 1:35:00 AM 3:20:00 AM 12:16:00 PM 1:53:00 PM	1:50:00 AM 3:26:00 AM 12:25:00 PM 2:08:00 PM	15 min 6 min 9 min 15 min

- \clubsuit Average total access time per day: 62 min
- \clubsuit Total access time per access: 11.5 min

Attitude Control

- ✤ Purely Passive control
- Dampened gravity gradient boom
 - ➤ 10° controlling accuracy
- \clubsuit Use solar cells to determine which side is sun-normal (for payload)
- $\boldsymbol{\diamondsuit}$ The boom will be constructed of Nitinol and will be part of the antennae

Command & Data Handling

- ✤ "Brains" of the CubeSat
 - \succ Read voltage across the payload (UV sensor)
 - > Monitor thermal conditions using thermistors
 - > Send collected data to the TNC for sending to ground station
- ✤ Reconfigurable FPGAs
 - Protects against single event upsets caused by radiation
- ✤ Current status:
 - Programming / testing a development FPGA
 - Trade studies on different FPGAs

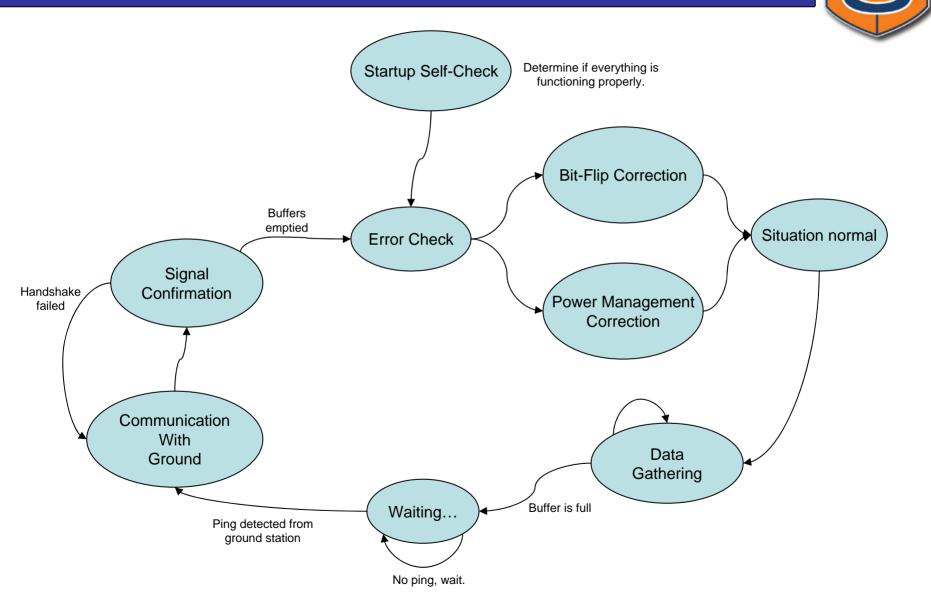
FPGAs

✤ Reconfigurable Field Programmable Gate Arrays (FPGAs):

➤ Configuration memory can be read and rewritten without effecting operation

> Allows hardware design to be changed easily in-flight

 \succ Relatively low cost


➤ Capable of detecting and correcting single event upset (SEU) errors caused by high-energy particles hitting critical nodes

➢ Prevent single event latch-ups (SEL) by using industrial FPGAs. (Radiation hardened)

Basic FPGA State Diagram

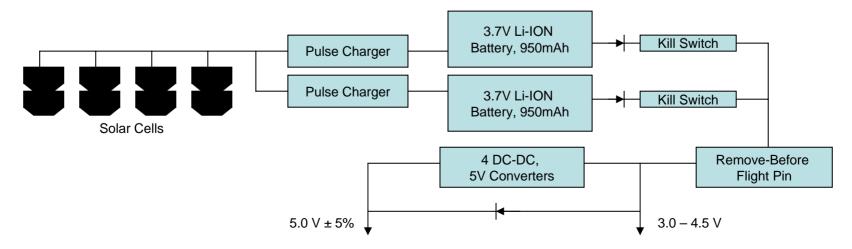
AubieSat-

Communications

✤ Purpose:

- ➢ Get the results of the experiments from the satellite to the ground
- ✤ To accomplish this:
 - \succ C&DH sends collected data to a terminal node controller (TNC)
 - \succ The TNC formats the data and sends it to the transceiver
 - > Transceiver uses the antenna to transmit and receive data
- ✤ Uplink/Downlink frequency: 440 MHz
- ✤ Current status:
 - Researching / testing transceivers and antenna combinations

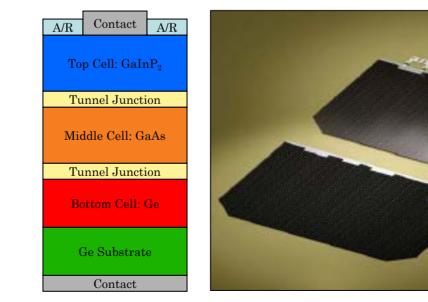
Ground


Power

♦ (2) ULTRALIFE Lithium ION Rechargeable batteries

- ➢ Average Voltage: 3.7 V
- ➤ Capacity: 950 mAh
- \succ EOL efficiency: 80%
- Specific energy storage:10.1 kJ
- ≻ Total energy storage: 20.2 kJ

Functional Block Diagram:



Solar Cells

- ✤ Spectrolab's 26.8% Improved Triple Junction (ITJ) Solar Cells
- ✤ Advantages:
 - Beginning of life (BOL) efficiency:
 - ➢ End of life (EOL) efficiency:
 - Space-qualified and flight heritage in low earth orbit environments
- Disadvantages:
 - Very brittle
- ✤ Area: 25 cm² each

26.8%

22.3%

Environment

 \clubsuit Radiation

South Atlantic Anomaly

 \succ 1.5mm Al shielding will block most electrons below 1MeV and protons below 10MeV

➤ AubieSat-1's solar cell makeup of GaInP₂/GaAs provide increased radiation hardness over other cells

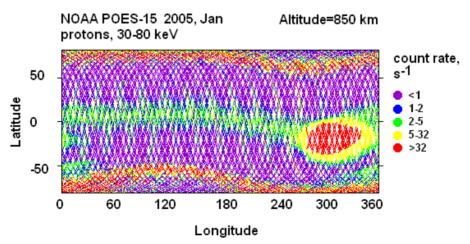
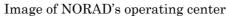


Image by the National Oceanic and Atmospheric Administration

Thermal

AubieSat-I

- ✤ Harsh thermal environment
 - ≻ Temperatures can range from -200°C to 100°C at any given time
- Purpose:


➤ To keep all of AubieSat's components and structural elements within their operational limits at all times

- > To report component temperatures to ground station
- Thermal modeling / simulation
 - > ANSYS Workbench
 - \succ Steady-state and transient analysis
- ✤ Thermistors
 - ➤ YSI 44000 series

Ground Station

- ✤ Requirements:
 - \succ Transmit commands to AubieSat-1
 - Receive data from AubieSat-1
 - Process and report received data
- ✤ Tracking of AS-1:
 - Based on Keplerian elements provided by NORAD
 - Standard NORAD/NASA Two-Line Element (TLE) format

Payload

- RubieSat-I
- ♦ New type of Ultra-Violet (UV) Sensor
 ▶ Currently being designed by graduate students in the Auburn University Physics department
- ✤ Objectives:
 - \succ Measure the voltage across the sensor both exposed to the sun and not exposed outside of the atmosphere
 - Report results to ground station
- Secondary Objective:
 - \succ Monitor how the sensor degrades over time

- Contact Information:
 - <u>http://space.auburn.edu</u>
 - Dr. Wersinger: wersinger@physics.auburn.edu
 - Eric Grimes: eric@auburn.edu

