SMARTSat

Shape Memory Alloy Research Technology Satellite

Allison Barnard

Alicia Broederdorf

Texas A&M University

Space Engineering Institute

Outline

- Introduction / Mission Objectives
- Systems Overview
- Power Analysis
- Thermal Analysis
- Mass Budget
- Balloon Testing

Introduction

- The Space Engineering Institute program at Texas A&M's Spacecraft Technology Center is a partnership with NASA that is focused on providing an opportunity for undergraduate students to work in teams on projects directly related to the space industry.
- One team of 5 to 15 students has been designing a CubeSat for several semesters.

Mission Objectives

- Demonstrate the use of Shape Memory Alloys to deploy solar panels.
- Demonstrate an attitude determination algorithm using input from a magnetometer and sun sensors.
- Take and transmit pictures of Earth.

Structure

- Six panels of Aluminum 6061
 Integrated side rails
- Cover panels on all sides
 - Ground plane for solar cells
 - Radiation shielding

Integrated mounting brackets for components

Command and Data Handling/ Communications

- Microprocessor
 - DragonBallVZ
 - Processing power for attitude determination
 - High radiation tolerance
 - Low power
- Microcontrollers for redundancy

- Radio
 - Yaesu VX-2R
 - Modified to reduce mass and space
 - TNC
 - PicoPacket
 - 1200 Baud
 - Smallest complete TNC available
 - Modified to reduce
 power, mass, and
 space

Attitude Determination and Control

Attitude Determination:

- Magnetometer
 - Honeywell HMC 2003
 - Three-axis magnetic sensor

- Sun Sensors
 - Hamamatsu positionsensitive detectors

Kalman Filter

Attitude Control

Magnetorquers (active)

- Gravity Gradient boom (passive)
 - Gravity holds the long axis perpendicular to earth's surface

Camera

- SXGA Camera Module
 - Dialog Semiconductor
 - 1.3 Mega pixels
 - JPEG compression
 - Low power consumption

Shape Memory Alloy System

- Shape memory alloy (SMA) strips will deploy four panels each with an additional solar cell
 - Lightweight
 - Controlled deployment
 - Very simple system

Power Subsystem

Power Analysis

- Used Thermal Desktop and RadCad to analyze solar power available to the satellite during its orbit.
- Satellite was simulated to remain stable on its axes during orbit, approximating the attitude control system.
- Data output provided solar energy input in W/m² for each cell at 39 positions during one orbit. Each TecStar solar cell has a 22% beginning of life efficiency.

Thermal Analysis

- Single-node analysis
 - sphere used in place of the satellite, with equivalent surface area
- Hot and cold case analyzed
- Thermal Desktop model being developed

Mass Budget

Component Category	Budgeted Mass	Current Mass
Mech. Design	35.00%	33.60%
Electrical	26.00%	19.80%
Thermal	2.50%	0.50%
Attitude Control	8.50%	6.50%
C&DH	5.00%	4.20%
Communications	14.50%	13.00%
Payload	2.50%	0.16%
SMA Hinges	1.00%	0.92%
Contingency	5.00%	5.00%

Balloon Testing

- SMARTBox is the high altitude balloon platform for testing SMARTSat components in a near space environment.
- Components and subsystems can be tested at altitudes around 100,000 feet, and recovered after testing using the tracking system.

Conclusions

- Teamwork and communication is extremely important, especially with such a large team with different skill and experience levels, working on different schedules.
- Initial design phase has been completed. Subsystems are moving into the prototyping and testing stages.
- Prototypes will be tested on balloon launches beginning in the fall of 2006.

sei.tamu.edu/cubesat

