Quad-Thruster FEMTA Micropropulsion System for CubeSat 1-Axis Control

Katherine Fowee
Steven Pugia
Ryan Clay

Matthew Fuehne
Margaret Linker
Dr. Tony Cofer
Prof. Alina Alexeenko

August 5, 2017

Supported by NASA STP NNX15AW40A in collaboration with Goddard Space Flight Center
Contents

1. Background and Intent of Research
2. Methodology
3. Results and Conclusions
4. Future Work
Film Evaporating MEMS Tunable Array (FEMTA)

Technology Overview

• Microelectromechanical systems (MEMS) thruster using ultra-pure deionized liquid water as propellant

• Utilizes thermally controlled microcapillaries with low-power platinum microheaters to generate micronewton thrust

• FEMTA Gen4 nozzles used for this demo

• FEMTA Gen3 demonstrated $I_{sp} > 80$ s, thrust-to-power ratios of 230 μN/W, and thrust was measured from 6-68 μN2
<table>
<thead>
<tr>
<th>Propulsion Technology</th>
<th>I_{sp} [sec]</th>
<th>Thrust [mN]</th>
<th>Power [W]</th>
<th>Mass [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Gas</td>
<td>32 - 80</td>
<td>0.01 - 40.0</td>
<td>1 - 5</td>
<td>10 - 500</td>
</tr>
<tr>
<td>Electrospray</td>
<td>800 - 2,300</td>
<td>0.06 - 0.7</td>
<td>1.5 - 15</td>
<td>95 - 500</td>
</tr>
<tr>
<td>Ion Engine</td>
<td>300 - 3,500</td>
<td>0.05 - 1.4</td>
<td>10 - 60</td>
<td>~ 400</td>
</tr>
<tr>
<td>Pulsed Plasma Thruster (PPT) and Vacuum Arc</td>
<td>540 - 3,000</td>
<td>0.001 - 0.09</td>
<td>2 - 14</td>
<td>200 - 500</td>
</tr>
<tr>
<td>FEMTA</td>
<td>50 - 95</td>
<td>≤ 0.5</td>
<td>< 1</td>
<td>~ 45</td>
</tr>
</tbody>
</table>

FEMTA is a low mass, low power alternative for small spacecraft attitude control.
FEMTA nozzle is etched into a 300-micron thick, 100 mm diameter, \langle1 0 0\rangle oriented silicon wafer.

Fabrication Methods
- Standard Photolithography
- Oxide Growth
- Wet Etching
- Plasma Etching
Research Intent

Quad - Thruster FEMTA Micropropulsion Experiment

- Demonstrate the ability to cause rotation about the satellite’s vertical axis
 - Fabricate 1U cubesat to standard specifications – 10 cm cube, 1.33 kg
 - Design and fabricate duplex FEMTA thrust cell with shared, gravity fed propellant tank and electrical connections
 - Design and build harness for testing inside Purdue’s large vacuum chamber
 - Include an on-board angular position sensor
 - Battery must provide at least 5V and 2 A h
 - Minimize weight of system

- Characterize the thrust and spin of the satellite
- Demonstrate repeatable control of the satellite with a FEMTA micropropulsion system
1U-Quad-Thruster FEMTA CubeSat

Design Overview

1U-Quad-Thruster Model components

- Inertial Measurement Sensor
- FEMTA Duplex Thrust Cell
- Power Conditioning Board
- Microcontroller Raspberry Pi 3B
- Power Supply 2,500 mAh battery

Communication Diagram
1U-Quad-Thruster FEMTA CubeSat

FEMTA Duplex

- Houses 2 opposing FEMTA thrusters
- Contains 3.5 g of ultra-pure deionized water as propellant
 - Approximately 12 hours of single FEMTA use
- Total mass of approximately 33 g
- 3D printed with a stereolithography resin printer
1U-Quad-Thruster FEMTA CubeSat

Experiment Setup

- Testing conducted in 4.2 m³ vacuum chamber at 30 - 40 microTorr.
- Satellite suspended using a harness system designed to dampen external vibrations.
Results

High-Vacuum Testing History

<table>
<thead>
<tr>
<th>Test</th>
<th>Failure Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>Failure - Water leaked into chamber</td>
<td>May 2, 2017</td>
</tr>
<tr>
<td>Test 2</td>
<td>Failure - Nozzles clogged</td>
<td>May 9, 2017</td>
</tr>
<tr>
<td>Test 3</td>
<td>One thruster operational</td>
<td>June 6, 2017</td>
</tr>
<tr>
<td>Test 4</td>
<td>Three thrusters operational, partial IMU failure</td>
<td>June 8, 2017</td>
</tr>
<tr>
<td>Test 5</td>
<td>Failure – Battery</td>
<td>June 9, 2017</td>
</tr>
<tr>
<td>Test 6</td>
<td>Failure - Pi disconnected, CPU overheating</td>
<td>June 28, 2017</td>
</tr>
<tr>
<td>Test 7</td>
<td>4 thrusters operational, one constantly firing</td>
<td>July 7, 2017</td>
</tr>
<tr>
<td>Test 8</td>
<td>Very low speed rotations achieved</td>
<td>July 13, 2017</td>
</tr>
</tbody>
</table>
Results

Test 4 - Video From

Indications of performance

- Observe the rotation through a window in the vacuum chamber.

- Watch the background vacuum chamber pressure spike (~35 microTorr to ~80 microTorr).

- LED lights indicate that power is supplied to the FEMTA.
Results

Test 4 - IMU Data

Bosch BNO055 9-axis IMU

Averaged Position Data

Averaged Velocity Data

Beginning of Rotation
Conclusions

- The quad-FEMTA thrusters integrated into a 1U CubeSat prototype and yielded quantitative verification of single-axis rotation under high vacuum conditions.

 - An average **slew rate of 7 degrees per second** and **average angular acceleration of 0.3 degrees per second squared** was measured.

 - Single-axis rotation was successfully provided by the propulsion system at a **power input of 250 mW**.

- Gyroscopes on COTS IMUs fail in high-vacuum, likely due to packaging in low-vacuum. Magnetometer yields reliable rotation data.

- Copper plate heat sink (< 50g) provides adequate heat transfer from Raspberry Pi CPU allowing operation under < 40 °C for several hours in high vacuum.
Future Work

1U - Quad - Thruster FEMTA CubeSat

➔ Incorporate new and more advanced sensors
 More advanced and durable angular position sensor
 Propellant tank temperature sensor
 Barometric sensor to measure local pressure changes due to FEMTA operation

➔ Improvements to the FEMTA duplex design
 Controlled pressure relief valves
 Using non-acrylic material
 Changing from Gaskets to O-rings for easier installation

FEMTA advancement for flight demo

➔ GSFC electrothermal shutters to mitigate quiescent evaporation in vacuum (20 mg/hr=20 g for 6 wks)
➔ Closed-loop control of heaters
➔ Gravity-free propellant feed for flight demo
Acknowledgements

• Purdue University’s School of Aeronautics and Astronautics for providing the support for the undergraduate course

• Khary Parker and Carl Kotecki at GSFC for their help and advice on this project

• Engineering staff at the Birck Nanotechnology Center and the Artisan Fabrication Laboratory at Purdue University for their assistance

• Professors Dan Dumbacher and David Spencer at Purdue University for their criticism and feedback during the project design reviews
References

Questions?

Undergraduate Research Team
Fabrication Techniques

- Standard Photolithography
 - AZ 9260 (negative photoresist) for the larger and thicker features
 - AZ 1518 (negative photoresist) for smaller more delicate features
 - Method for laying: Spinning
 - Soft and hard bake before and after exposing to photoresist
- Plasma Etching
 - Sulphur Hexafluoride to etch throat and oxide layer
- Wet Etching
 - Nozzle Inlet
Control System

- Proportional - Integral - Derivative (PID) controller designed to minimize the difference between actual spin angle and reference spin angle

\[e = \phi_{\text{ref}} - \phi_{\text{act}} \]

\[\frac{de}{dt} = \frac{e_{\text{curr}} - e_{\text{last}}}{\Delta t} \]

\[\int e \, dt = \sum e_i \]

- Controller output is in the form of percentage of maximum thrust
 - Output is converted to a voltage for each FEMTA
Avionics

- On-board microcontroller communicates with a second Raspberry Pi inside the chamber via wifi
- Custom software allows user to issue commands to the satellite as well as run diagnostics
- Printed circuit board designed with a 4 channel DAC provides analog signals for thruster control
- Circuitry has been designed to incorporate propellant temperature sensors in future iterations