THE RANGING AND NANOSATELLITE GUIDANCE EXPERIMENT (RANGE)

Brian C. Gunter, Byron T. Davis, E. Glenn Lightsey, Robert D. Braun
Daniel Guggenheim School of Aerospace Engineering

Georgia Institute of Technology

Space Systems Design Laboratory
• Two 1.5U satellite formation
• Selected for a launch opportunity through the Terra Bella (formerly Skybox) University Cubesat Partnership
 – Satellite delivery due in 2016
• Mission objectives
 – Improve absolute and relative positioning capabilities of nanosats
 – Explore propulsion-less formation control techniques
 – Transmit low-rate optical (laser) communications
• Innovations
 – Demonstrate m to cm level POD for cubesats
 – Demonstrate mm-level inter-satellite ranging
 – Demonstrate inter-satellite laser comm from a nanosat platform
 – Evaluate performance of miniaturized atomic clock
Satellite Laser Ranging (SLR)
• Satellites will have no propulsion system
• Intersatellite distance (in plane) will be controlled through differential drag
 – Change in drag ratio (orientation) between the two satellites causes a relative motion
 – Well described in the literature, but few mission examples (Planet Labs, Aerospace AC6)
• Current mission plan will vary distance from hundreds to thousands of meters
• Primary payloads
 – Novatel OEM628 Receiver (L1/L2)
 – Chip Scale Atomic Clock (CSAC)
 • $< 2.5e^{-11}$ ADEV over 10s

• Orbit validation through ground-based satellite laser ranging (SLR)
 – Service provided by the NLR/ILRS
 – Cm-level accuracy
• Laser Rx/Tx System
 – Made by Voxtel
 – 25 kW, 4 ns pulses
 – APD sensitive to nW
 – Custom optics design (GTRI)
 – 2.5° beam divergence to account for coarse s/c pointing
 – Class 1 (eye-safe), 1535nm

• Est. one-way detections to 500 km, dual-way detections < 1km

• Same system will also be tested as a low-rate laser communications
RANGE – S/C DESIGN

- **GPS antenna** (Antcom)
- **GPS receiver** (Novatel)
- **ADCS** (GT, CubeSpace, SolarMEMS)
- **OBC/COMMS/CDH** (Gomspace)
- **Laser Rx/Tx** (Voxtel)
- **CSAC** (Microsemi, Jackson Labs)
- **Solar panels** (Pumpkin)
- **UHF/VHF antenna** (Gomspace)
- **EPS** (Gomspace)
- **Corner cube reflectors**
• Custom structure
• Custom solar panels (Pumpkin)
HARDWARE

- Ruggedized electronics
- Custom Torque rods
- Reaction wheels (CubeSpace)
- Integration and Testing
- ADCS

ReacEon wheels (CubeSpace)
CHALLENGES AND NEXT STEPS

• Complete RANGE integration and testing
 – Flight software maturity
 – Environmental testing (thermal vacuum, vibration, antenna characterization)

• Controlling inter-satellite distance
 – Differential drag techniques still experimental
 – Want to avoid fast/out-of-plane separation of satellites
 – Refining simulations using advanced models (rarefied flow)

• Maintaining sufficient pointing control for laser Rx/Tx
 – 3-axis S/C pointing control expected to be 3-5°
 – With 2.5° laser beam divergence, continuous Rx/Tx not guaranteed
 – With only one reaction wheel, precise rotation only possible for one-axis
 – May require random attitude “search” until alignment achieved
• Acknowledgements
 – Terra Bella
 – Office of Naval Research & Naval Research Laboratory
 – Georgia Tech’s Center for Space Technology and Research (CSTAR)
 – Georgia Tech Research Institute (GTRI)
 – Over 40+ graduate and undergraduate students involved to date

• Contact: Brian Gunter
 brian.gunter@aerospace.gatech.edu