Model Based Design and Auto Coding of an FPGA Based Satellite Control System

Jorden Luke
What is Model Based Design?

Model-Based Design

- Research
- Requirements

Model

Supervisory Logic
Algorithms

Implementation

C, C++
VHDL, Verilog

MCU, DSP, FPGA, ASIC

Integration

Test & Verification
1. An expert creates a high level computer simulation: Control system, commutation, etc.

2. Engage with a firmware developer/expert to code model to FPGA hardware.

3. Lots of back and forth between these two experts.
FPGA Implementation

- Simulink is often used to model the spacecraft system
- Instrument control
- ADCS subsystem

- The programmer often creates diagrams of the FPGA functionality required

- Text entry of the system in a descriptive language like HDL

- Synthesis tools take HDL code and place on an FPGA
Model Direct Implementation

Model Based Auto coding

1. Expert creates a model.
2. Expert generates FPGA code from model.
3. Expert deploys code to hardware.
4. Expert confirms that model is working properly on hardware.
Why FPGA for Small Sats?

- Ease of Parallel and real time processing.
- Low power.
- Radiation Tolerance.
- Advanced Computational Capabilities.
Simulink/HDL Coder

- **Simulink**
 - Block level design
 - Arithmetic functions (filters, FFT’s)

- **State flow**
 - Logic flow (if then else)
 - State Machines

- **HDL Encoder**
 - Auto codes both to HDL

Flow Diagram:
- MATLAB
- Simulink
- HDL Coder
- Verilog and VHDL

University of Utah State University
HDL Coder Blocks

- Concat
- Reduce
- Rotate
- Shift
- Slice
- Bit Concat
- Bit Reduce
- Bit Rotate
- Bit Shift
- Bit Slice
- Deserializer 1D
- Dual Port RAM
- HDL Counter
- HDL FIFO
- HDL Reciprocal
- Multiply-Add
- Serializer 1D
- Simple Dual Port RAM
- Dual Rate Dual Port RAM
- Single Port RAM
Where we are using this process

ADCS

Ion Drift Meter
Ion Drift Meter Hardware

- FPGA Microsemi Igloo
- Control Instrument
- Packetizes Data

- Ion Drift Meter
- Designed to measure currents down to femto amps
The Drift Meter Simulink Model
Inside Look at the DDC FSM

DDC Chart

State Flow Diagram
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

ENTITY DDC_FSM IS
 PORT(clk : IN std_logic;
 reset : IN std_logic;
 DATA_IN : IN std_logic;
 DATA_VAILD_L : IN std_logic;
 DDC_side : IN std_logic;
 start : IN std_logic;
 bits : OUT std_logic_vector(7 DOWNTO 0); -- ufix80
 CONV_DONE : OUT std_logic;
 DCLK : OUT std_logic;
 CONV_Out : OUT std_logic_vector(7 DOWNTO 0); -- uint8
 CONV_CNT : OUT std_logic_vector(31 DOWNTO 0) -- uint32
);
END DDC_FSM;

ARCHITECTURE rtl OF DDC_FSM IS
Outputs From Scopes

Simulink Scope

Bit Scope
Synthesized Model
Results

- We were able to use Simulink and HDL coder to talk to low level hardware.
- We were able to use Simulink to quickly generate HDL code to packetize our data.
ADCS

- Full simulation of Attitude Determination and Control System
- Full orbit simulation of ADCS
- Hardware in the loop
ADCS Model
Conclusions

- A really good option for faster development
- Produces well optimized HDL Code
- Self Documenting
Questions?