Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink
Outline

• Objectives
• Ka-band background
• Software defined radios
• Ka-band antennas
• Potential data return in Ka-band
• Summary
Ka-band Communications

OBJECTIVES
Objectives

• Develop affordable technologies to ease transition into Ka-band for significantly higher data rates with minimal impact on near Earth missions
 – Ka-band/multi-band *software defined radios (SDRs)* and standards for a range of space missions
 – *Portable waveforms* for SDRs to reduce cost of development and increase flexibility
 – *Electronically steered high gain antennas* to increase data return and eliminate mechanisms and vibration
 – Leverage *large and small business and university* capabilities to address unique needs of small spacecraft
NASA Ka-band Communications Infrastructure

KA-BAND BACKGROUND
• NASA’s Tracking and Data Relay Satellite (TDRS)
 – Three generations of spacecraft provide high bandwidth, low latency communications to multiple simultaneous mission spacecraft
 – S-band, Ku-band, and **Ka-band Single Access (KaSA)** and S-band Multiple Access services

• KaSA Service via large steerable antennas in auto-track mode
 – **Return** (from spacecraft) of mission data and spacecraft telemetry; **G/T: 26.5 dB/K**; 25.25-27.5 GHz
 – Forward (toward) command and control EIRP: 63.0 dBW; 22.55-23.55 GHz
 – Field of View ± 76.8° E-W; ± 30.5° N-S
NASA Near Earth Network (NEN)
Ka-band Tracking Terminal Examples

- **WS-1**
 - White Sand Complex
 - 18 m
 - S-, X- and Ka-bands
 - Ka-band \(G/T \) of 46 dB/k

- **AS-3**
 - Alaska Satellite Facility
 - 11 m
 - S- and X-bands operational
 - Provisions for Ka-band capability in ~2020
 - Expected Ka-band \(G/T \) of 40 dB/k
Commercial Ka-band Tracking Terminal Example

- Comtech TCS 2.4m X/Y Tracking Terminal
 - Eliminates “keyhole” when spacecraft is overhead
- Ka-band operation
 - 25.5 to 27.0 GHz
 - G/T of 27 dB/K

Type 2 Ground Mount on Roof

Source: http://www.telecomsys.com/Libraries/Collateral_Documents/XY_Overview_Brochure.sflb.ashx
NASA Near-Earth Mission Frequency Spectrum and Typical Channel Bandwidths

<table>
<thead>
<tr>
<th>Mission Links</th>
<th>Via TDRS Relays (GHz)</th>
<th>Via NEN Direct to Ground Links (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space-Space</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>Bandwidth</td>
<td>Return</td>
</tr>
<tr>
<td>• S-band</td>
<td>2.025-2.110</td>
<td>0.028</td>
</tr>
<tr>
<td>• Ku-band</td>
<td>13.775+.070</td>
<td>0.065</td>
</tr>
<tr>
<td>• Ka-band</td>
<td>22.55-23.55</td>
<td>0.065</td>
</tr>
<tr>
<td>Space-Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uplink/Command</td>
<td>Bandwidth</td>
<td>Downlink/Telemetry</td>
</tr>
<tr>
<td>• S-band</td>
<td>2.025-2.110</td>
<td>0.085</td>
</tr>
<tr>
<td>• X-band Earth Science</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>• X-band Space Science</td>
<td>7.190-7.235</td>
<td>0.045</td>
</tr>
<tr>
<td>• Ka-band</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Overlap Up to 4x
SOFTWARE DEFINED RADIOS

STRS and Ka-band SDRs
NASA Standard for Software Defined Radios (SDR) for Space Applications

- **Space Telecommunications Radio System (STRS) Architecture and Standard** ([NASA-STD-4009](https://strs.grc.nasa.gov/))
 - Enables independence of applications from software defined radio platform/hardware
 - Reduces effort to develop, port and share applications waveforms and documentation via repository
 - Applicable to all categories of spacecraft from large platforms to SmallSats and CubeSats
 - Multiple vendors have STRS compliant SDRs or platforms in their product line
 - Others under development via partners and NASA SBIR/STTR Program
 - See https://strs.grc.nasa.gov/
SCaN Testbed on ISSs is Flying Multiple STRS-Compliant SDRs from 3 Vendors

SDRs offer economies-of-scale via common hardware, tailored to mission needs via STRS-compliant software.

Harris
- **Ka-band SDR;** 225 MHz
- **>500 Mbps Class**
- Virtex IV, PowerPC Proc, DSP (1 GFLOP), VxWorks
- STRS adopted for use in Harris AppSTAR™ software-defined payload architecture

General Dynamics
- **S-band SDR;** 6 MHz channel
- **10 Mbps Class**
- Virtex II, ColdFire Processor (60 MIPS), VxWorks, CRAM (Chalcogenide RAM) Memory

JPL/L-3 CE
- **S-band SDR;** 6 MHz channel
- **10 Mbps Class**
- L-band receive (GPS)
- Virtex II, Sparc Processor, RTEMs
SBIR/STTR Contracts for STRS-Compliant SDR Technologies

• SBIR-14 Commercialization Readiness Program
 – Software Defined Near Earth Space Transceiver (SD-NEST) [Space Micro]

• STTR-15 Phase I

• SBIR-16 Phase I Selections
 – OpenSWIFT-SDR for STRS [Tethers Unlimited]
 – Plug-In Architecture for Software-Defined Radios [Blue Sun]

• [Earlier SBIR SDR Contracts non-STRS Compliant]
 – https://www.nasa.gov/sites/default/files/files/SBIR_SDR.pdf

✓ Watch for the 2017 SBIR/STTR call for proposals in November 2016
Software-Defined Near Earth Space Transceiver (SD-NEST)

- **μSTDN-100 S-band Transceiver**
 - NASA IRIS, LADEE Missions

- **μXTx-100 / 200 X-Band Transmitter**
 - NASA IRIS Mission

- **Proton 400k Rad-Hard Processor**
 - NASA MISSE-X Mission

- **μKaTx-300 Ka-band Transmitter**
 - NASA TESS Mission

- **STRS Waveforms (From Legacy Repository)**

- **SD-NEST STRS-Compliant Multi-Band Transceiver**

- **X/Ka Wideband Receivers (New Development)**
Software-Defined Near Earth Space Transceiver (SD-NEST)

- **Frequency agile, multi-band transceiver**
 - Narrowband TT&C over any frequency S-, X- or Ka-bands
 - Wideband data return and forward over X-band (375 MHz) or Ka-band (>650 MHz)
- **Flexible waveform processing**
 - Low-power mode for TT&C alone
 - High-performance mode for high-rate mission data return (>1.2 Gbps)
- **STRS Operating Environment**
 - General-purpose processor available (e.g. P400K) for high-level control algorithms

![Diagram of SD-NEST components](image)

- **Engineering Model Completion in FY17**
- **Seeking partners for contract option (with cost sharing) for proto-flight model**
Alternatives to Mechanically Deployed or Steered Antennas

KA-BAND ANTENNAS
Mechanically Steered High Gain Antenna Examples

SCaN Testbed Ka-band and S-band Antenna Positioning System (APS)

Surrey Satellite X-band (COTS) and Ka-band (Under development) Antenna Pointing Mechanisms (APM)

<table>
<thead>
<tr>
<th></th>
<th>SCaN Testbed APS on ISS</th>
<th>SSTL X-APM</th>
<th>SSTL Ka-APM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>25.5 – 27.0 GHz</td>
<td>2.025-2.11 GHz</td>
<td>8.0 – 8.5 GHz</td>
</tr>
<tr>
<td>Gain</td>
<td>39.8 dBi</td>
<td>13 dBi</td>
<td>18 dBi</td>
</tr>
<tr>
<td>Antenna diameter</td>
<td>~46 cm</td>
<td>~25 cm</td>
<td></td>
</tr>
<tr>
<td>Overall Dimensions</td>
<td>57 cm x 30 cm x 71 cm</td>
<td>Ø 27.4 x 30 cm</td>
<td>TBD</td>
</tr>
</tbody>
</table>
GRC 3-D Printed Ka-band Faceted Dome Array – Concept and Prototype

- 36 Elements (16 at 30°, 16 at 15°, 4 at 0°)
- ~90 degree field of regard (~30° beamwidth)
- Probe Fed Elements 14.4 dBi, 256 MHz BW
• STTR-14 Phase II
 – Fully Printed Flexible 4x4 Element Graphene–Based Phased Array Antenna; [Omega Optics/U. Texas Austin]

• STTR-16 Phase I Selection
 – Deployable Ka-band Reflect Array Antenna; [Tyvak Nano-Satellite Systems/UCLA]

• SBIR-16 Phase I Selection
 – Space Environment Design and Testing; [Kymeta Government Solutions, Seattle, WA]

✔ Watch for the 2017 SBIR/STTR call for proposals in November 2016
Graphene Based, Flexible, Fully-Printed 2D-Scanning Phased Array – Omega Optics and Texas State University

• **Goal**
 – Develop a flexible ink-jet printed Graphene-based 4-bit 4x4 phased array antenna (PAA) at S-band

• **Development Approach**
 – Grow Graphene nano-flakes via CVD and incorporate into Graphene ink
 – Print multi-layer integrated circuits and interconnections on flexible substrates
 – Print Rx/Rx modules from Graphene transistors, phase shifters and amplifiers
 – Test a prototype printed PAA

• **Applications**
 – CubeSat and SmallSat antennas
 – Large deployable phased array antennas
 – Reconfigurable, deployable, conformal, and/or wearable active antennas

![Graphene flakes](image1.png)
![Inkjet printed transistor](image2.png)
![Multilayer interconnect](image3.png)
![Printed Graphene PAA](image4.png)
CubeSat Antenna
- Frequency: Optimized for 27.0 GHz
- Gain: \(\sim 24 \text{ dBiC over scan volume} \)
- Electronically steerable; \(\pm 45^\circ \) range
- Power: <5W

SmallSat Antenna
- Simultaneous transmit and receive out of same aperture for X, Ku, and Ka bands
- Capability at Q, V and W bands
- Technology creates potential for economical 6U, 12U, and larger form factors

Maturity
- Designed, built, tested, delivered
- Next steps: Modifications for space (SBIR Phase I), flight qualification testing and demonstration mission

Maturity
- Initial design target sets identified
- Early modeling and simulation complete
- Seeking a development partner to fund detailed design, build, and test
Current NASA Activities with Kymeta Meta-material Phased Array

KGS SBIR Phase I (GSFC)

• Seeks to space qualify CubeSat antenna
 – Define requirements
 – Hardware redesign
 – Antenna redesign
 – Thermal characterization

• All of which seek to make the SmallSat antenna space flight-qualifiable

Cubesat Antenna Measurements (GRC)

• Seeks to characterize the metamaterial-based technology beyond its design parameters gain insight into what it can do
 – Leverage antenna measurement systems and talent at GRC to obtain high quality pattern, polarization, power, and steering measurements.
 – Compare against other Ka-band antenna technologies for potential for use on CubeSat and SmallSat missions.
Boeing 256-Element Ka-Band Transmit Phased Array Antenna for GRC and ONR

Array Number of Elements: 256 Elements
Band: 25.5-27.5 GHz; > 1 GHz Bandwidth
Beam width: Nominal 5 degrees at -3dB
Gain (CP): 28 dBi
EIRP: Peak 36.5 dBW; 33 dBW@ 60 Degrees
Array Total DC Power: 90 Watts (per beam)
Dimensions: 19 cm x 10.2 cm x 6.5 cm
Mass: 1.8 kg

Limitations:
- Lab model over 10 year old design; many components obsolete
- Rad-hard Triquint GaAs MMIC design kit and foundry process retired
- “Brick” design is more expensive to manufacture than “tile” approach
Scalable Ka-band Active Phased Array Antenna (PAA) Design

• Space qualifiable tile PAA design
 – Based on Boeing Wideband Communication and RF Systems Group airborne product line
 – Tile packaging significantly reduces costs and offers higher efficiency than brick design
 – SiGe 0.15 um process; rad-hard by design
 MMICs to 300 krad (Si)

• Ka-band: 25.25 to 27.5 GHz
 – Right-or left-hand circular polarized

• Wide field of regard: ± 70°
 – LEO mission to GEO relay or direct to ground

• Easily scalable implementation
 – **Select 64, 128 or 256 elements for EIRP of 24-, 30- or 36-dBW respectively**
 – Range of user needs, budgets, SWaP constraints

• Potential for data rates up to 3.2 Gbps
 – Performance with DVB-S2 MODCOD to be validated
Boeing Ka-band Tile Array for SmallSats

- 25.5-27.0 GHz
- ± 70 degree FOR
- 24-, 30- or 36 dBW
- 22.9 cm x 17.8 cm x 9.6 cm
- 1.8 kg
- <150 W depending on # elements and drive level
- Rad-hard by design
- 8 year design life

Ka-band PAA Shown on Boeing 502M SmallSat Bus

- 10s to 100s Mbps data rates in affordable, modular PAA packages optimized for SmallSat missions
- Available with integrated beam controller, power supply and thermal management
Comparisons Via GEO Relay and Direct to Ground (DTG)

POTENTIAL DATA RETURN IN KA-BAND
Potential Minimum Data Rates/Return Using Future Boeing Ka-band Tile Phased Array Antenna

<table>
<thead>
<tr>
<th>Data Return via</th>
<th>Bandwidth</th>
<th>Future Boeing Ka-band Tile Phased Array Antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64 Element</td>
<td>128 Element</td>
</tr>
<tr>
<td>TDRS, 26.5 dB/K</td>
<td>225 MHz</td>
<td>900 kbps</td>
</tr>
<tr>
<td>WS-1 Terminal</td>
<td>500 MHz</td>
<td>830 Mbps</td>
</tr>
<tr>
<td>18.3m, 46 dB/K</td>
<td>1.5 GHz</td>
<td>1.5 Gbps</td>
</tr>
<tr>
<td>AS-3 Terminal</td>
<td>500 MHz</td>
<td>520 Mbps</td>
</tr>
<tr>
<td>11m, 40 dB/K</td>
<td>1.5 GHz</td>
<td>940 Mbps</td>
</tr>
<tr>
<td>Comtech TCS</td>
<td>500 MHz</td>
<td>64 Mbps</td>
</tr>
<tr>
<td>2.4m, 27 dB/K</td>
<td>1.5 GHz</td>
<td>64 Mbps</td>
</tr>
</tbody>
</table>

- 1000 km, 98.5° mission, max ranges 38000 km, 2800 km, DVB-S2 MODCOD
- SmallSat DTG data rate ~70x higher than via TDRS; **~38 Gb/ 10 minute pass**
- Large mission DTG data rate ~235x higher than via TDRS; **~2Tb/10 minute pass**
Summary and Co-Authors and Contributors

CLOSING COMMENTS
Summary

• Affordable Ka-band communications technologies will enable a new generation of science and exploration missions through increased data return
 – Mission data return rates from 10s of Mbps to Gbps are feasible for range of small and large satellites

• NASA is working with industry and SBIR/STTR program to:
 – Develop STRS-compliant waveforms
 – Advance the technology readiness level of Ka-band SDRs
 – Develop and demonstrate Ka-band space-qualifiable electronically steered antennas
Co-Authors and Contributors

• NASA Glenn Research Center, Cleveland OH
 – Charles Niederhaus, Richard Reinhart, Joe Downey, Anthony Roberts, Michael Zemba, James Nessel, Bryan Welch

• Space Micro, San Diego CA
 – Bert Vermeire

• Boeing Satellite Systems El Segundo, CA and Boeing Research & Technology, Seattle WA
 – Mario Pavlovic, Nathan Mintz, Tony Monk, Tuan Ha

• Kymeta Government Solutions, Seattle WA
 – Tom Boyer

• Comtech TSC, Torrance CA
 – Jay Moody
For More Information

• Contact: James Budinger
 – 21000 Brookpark Road, Mail Stop 54-1
 – Cleveland OH 44135
 – james.m.budinger@nasa.gov
 – 216.433.3496
For your kind attention

THANK YOU!