A Europa CubeSat Concept Study for Measuring Europa's Atmosphere

N. Chanover, J. Murphy, K. Rankin, S. Stochaj, A Thelen
New Mexico State University
SmallSat Conference 2016 in Logan UT
Task

• JPL is flying Europa Multiple Flyby Mission (Europa Clipper) – Launches mid 2020s
• Interested in what could be done with a 3U CubeSat deployed from the clipper
• Resulted in DARCSIDE
 • Deployable Atmospheric Reconnaissance CubeSat with Sputtering Ion Detector at Europa
Europa Atmosphere

- Decided to study Europa’s atmosphere
- Two Experiments
 - Drag measurement – Heritage to Mars aerobraking
 - High energy particle detector – Heritage to Voyager particle detectors
- Want to improve understanding of icy satellites (moons)
- Implications for understanding Europa’s surface
Formation of Europa’s Atmosphere

McGrath et al. (2009)
Planetary Protection

• Planetary Protection Category III Mission
 • Can never touch the surface of Europa
 • Has significant implications for mission termination sequence
Mission Design
Orbital Trajectory

• Release shortly before apogee
• Cruise 175.66h (7 days)
• Burn right before Europa increases drag & sets up bi-elliptic transfer
• Targeting a pass over Europa at 1km – 10km
• Mission Termination generates an inclined orbit with a lower perijove then Europa.

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>ΔV (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Burn</td>
<td>3.1</td>
</tr>
<tr>
<td>Optional burn to increase drag</td>
<td>200</td>
</tr>
<tr>
<td>Mission Termination</td>
<td>100</td>
</tr>
<tr>
<td>ADACS & TCM</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>333.1</td>
</tr>
</tbody>
</table>
Particle Detector

- Voyager Heritage

D1-D4 are silicon strip detectors. Each pair, (D1, D2) and (D3, D4), will provide a set of x-y coordinates for the Θ correction. ΔE (dE) is measured in each layer. dx is the layer thickness corrected for the angle. The total Energy deposited is the sum of all the ΔE's. The particle stops before exiting the last layer.

$$dE/dx \sim Z^2/v^2$$
$$E \sim 1/2 m v^2$$
MEMS Nano-G Accelerometer

- Under development by AFRL
- Detection limit of 10 nano-g ($9.8 \times 10^{-8} m/s$)
- Capable of measuring predicted drag on DARCSIDE

Deployables
Europa Atmosphere models

• Used published models to initialize Europa’s neutral atom torus
• Assumed atmospheric models based on two particle populations:
 • Bound (but exponentially decreasing w/altitude)
 • Escaping
• Computed family of atmospheric density profiles with range of surface gas densities
Atmosphere Density

Modeled Density Profile Variations with Surface Density

- Low Escaping + Scale Height
- Escaping + Scale Height
- Escaping Plume + Scale Height

Altitude (km)

Density (kg km\(^{-3}\))
Drag Estimates

Acceleration as a Function of Time (500 km)

DARCSIDE

- Low Escaping + Scale Height
- Escaping + Scale Height
- Escaping Plume + Scale Height
- ADES Detection Cutoff

EUROPA CLIPPER

- Low Escaping + Scale Height
- Escaping + Scale Height
- Escaping Plume + Scale Height
- ADES Detection Cutoff
DARCSIDE Spacecraft Bus
DARCSIDE Avionics

Star Trackers

Accelerometer

Avionics Stack (CDH, EPS, COMM)
Questions?