MicroMAS: Updates on the Global Environmental Monitoring Nanosatellite Mission

MIT Lincoln Laboratory

Kerri Cahoy, P. Dave, A. Kennedy, R. Kingsbury, A. Marinan, T. Nguyen, E. Peters, C. Pong, M. Prinkey

MIT Space Systems Laboratory

N. Erickson, UMass-Amherst Radio Astronomy

This work is sponsored by the National Oceanic and Atmospheric Administration under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
MicroMAS SmallSat

WJB 7/17/2014

Outline

• Introduction and Motivation
• Radiometer Payload
• Spacecraft Bus Overview
• Prelaunch Test and Validation
• Summary

MicroMAS Launched July 13, 2014 (Orbital/Cygnus ISS Resupply)
Traditional Approach: Big Satellites

Suomi NPP Satellite
(Launched Oct 2011)

- Visible/Infrared Imager Radiometer Suite (VIIRS)
- Cross-track Infrared Sounder (CrIS)
- Cloud and Earth Radiant Energy System (CERES)
- Advanced Technology Microwave Sounder (ATMS)
- Ozone Mapping and Profiler Suite (OMPS)

Current Approaches Unsustainable

- Expensive
- Long development cycles
- Very high failure impact

Independent Assessment

NPP: National Polar Partnership
Focus: Microwave Sounding

Suomi NPP Satellite (Launched Oct 2011)

Advanced Technology Microwave Sounder (ATMS)

- Microwave sensor amenable to miniaturization (10 cm aperture)
- Broad footprints (~50 km)
- Modest pointing requirements
- Relatively low data rate
New Approach for Microwave Sounding

- Microwave sensor amenable to miniaturization (10 cm aperture)
- Broad footprints (~50 km)
- Modest pointing requirements
- Relatively low data rate

Perfect fit for a cubesat!

MicroMAS Satellite (Launched Jul 2014)
- 4.2 kg, 10 W, 34 x 10 x 10 cm

Suomi NPP Satellite (Launched Oct 2011)
- Advanced Technology Microwave Sounder (ATMS)
- 100 kg, 100 W

2100 kg

NPP: National Polar Partnership

NASA/GSFC
Architecture Studies Show Great Promise for Constellation Approaches

3 Satellites, one per plane

24 Satellites, eight per plane

Latitude
Longitude

Mean revisit time (hours)

60 40 20 0 -20 -40 -60
-150 -100 -50 0 50 100 150

60 40 20 0 -20 -40 -60
-150 -100 -50 0 50 100 150

Mean revisit time (hours)

.7
.6
.5
.4
.3
.2

MicroMAS SmallSat - 6
WJB 7/17/2014
DOME Constellation Concept

DOME = Distributed Observatory for Monitoring Earth (18 CubeSats)

DOME will provide 30-km mean horizontal resolution for sounding within hurricane eyes

Super Typhoon Haiyan (Nov 6, 2013) 90 GHz imaging (shown) and 118-GHz sounding penetrate the cloud tops

DOME will meet the PATH T(h) requirement

DOME will provide 15-minute median refresh rate at all longitudes and ± 40 latitude

VIS/IR observations are blind to storm structure
Constellation Improves Forecast

Figure credit: Jun Li, University of Wisconsin
Outline

• Introduction and Motivation
• Radiometer Payload
• Spacecraft Bus Overview
• Prelaunch Test and Validation
• Summary

MicroMAS Launched July 13, 2014 (Orbital/Cygnus ISS Resupply)
The MicroMAS CubeSat

- 4.25 kg total mass
- 10 W avg power
- 16 kbps max data rate
- 0.5° pointing accuracy
Measurement Requirements and Enabling Technologies

Temperature profile uncertainty of 2 K (RMS) in 50 km footprint needed to improve forecast accuracy

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Six or more channels</td>
<td>Ultracompact spectrometer developed by Division 8
Low-temperature co-fired ceramic filters
Operation from 18-29 GHz</td>
</tr>
<tr>
<td>Sensitivity better than 0.5 K (RMS)</td>
<td>Receiver front-end electronics developed by UMass-Amherst
MMIC low-noise amplifiers and electronic calibration</td>
</tr>
<tr>
<td>Calibration accuracy better than 1 K (RMS)</td>
<td>Noise diode source provides periodic absolute calibration of radiometer
Highly stable; compact</td>
</tr>
</tbody>
</table>
| Aperture ~9 cm | Beam efficiency > 95%
 Beam efficiency > 95%
 Offset parabolic reflector system with scalar feed
 Lightweight, with 0.001” RMS surface tolerance |

Receiver Front-end Electronics
- Developed by UMass-Amherst
- MMIC low-noise amplifiers and electronic calibration

Calibrator
- Noise diode source provides periodic absolute calibration of radiometer
- Highly stable; compact

Antenna
- Offset parabolic reflector system with scalar feed
- Lightweight, with 0.001” RMS surface tolerance

Spectrometer
- Ultracompact spectrometer
- Developed by Division 8
- Operation from 18-29 GHz
Micro-sized Microwave Atmospheric Satellite (MicroMAS)

- **3U (10 cm x 10 cm x 34 cm) CubeSat**
 - Cross-track scanning microwave spectrometer
 - Temperature and precipitation sensing

- **July 13, 2014 launch ISS resupply mission**
 - Deployed directly from ISS
 - 400 km, 52-degree inclination initial orbit

- **UHF downlink to NASA Wallops Flight Facility**

- **Designed for a one year mission lifetime**
 - Three month orbit decay from ISS release

Team MicroMAS

- **MIT Lincoln Laboratory (Lead)**
 - (Payload)
 - (I&T, SysEng, Controls support)
 - (Comm/Mission support)

- **MIT Space Systems Lab (Bus)**
- **UMass-Amherst (RF receiver)**
- **NASA Wallops (Ground)**
Timely development of COTS parts was a major program challenge.
MicroMAS Payload (Side View)
118-GHz Spectrometer

IF Processor
Dielectric Resonator
Oscillator
Frequency Tripler
Mixer
Preamplifier/Noise-diode Module
Waveguide
Feed-horn

10x10x10 cm, <1 kg, <2 W

Approximately a factor of 100 reduction in size, weight, and power relative to the current state of the art
MicroMAS Assembly
Outline

• Introduction and Motivation
• Radiometer Payload
• Spacecraft Bus Overview
• Prelaunch Test and Validation
• Summary

MicroMAS Launched July 13, 2014
(Orbital/Cygnus ISS Resupply)
ADCS Software & Hardware Testing

• Development and testing of the Attitude Determination and Control System (ADCS) was a primary challenge

• Tests were devised to exercise all ADCS modes
 – Detumble
 – Slew
 – Payload spin-up
 – Stabilize

• Specialized test fixtures were developed to assess performance
 – Suspension assembly
 – Helmholtz cage
 – Air bearing
Payload TVAC for Radiometric Calibration

- Detailed simulations of payload thermal (cyan) and radiometric environment (red, green, blue)
- Assessments were made of:
 - Sensitivity
 - Absolute accuracy
 - Linearity
 - Stability
Space Vehicle TVAC

- A week of testing over a range of temperatures (-40 C to +50 C)
- Verified thermal model of spacecraft subsystems
 - Encoder operation at cold temperatures
 - Radio operation at hot temperatures
- Characterized the noise diode used for calibration
Noise Diode On/Off Transients

![Graphs showing temperature transients](image-url)
Accuracy Meets 1 K Requirement

Bias corrections applied to external calibration targets
Sensitivity (NEDT) @ 300 K Scene

Channel

NEDT (K)

ATMS equivalent spot size; 250 K payload temperature
Radiometer Performance (Accuracy and Precision) is State-of-the-ART

ATMS equivalent spot size; 250 K payload temperature
• ~11 minutes of stare data separated into ~1.1 min. segments

• Averaged 10 FFTs (i.e., 10 segment)

• MicroMAS calibrated once every 0.75 sec
MicroMAS Operational Data Flowchart

Data Product	**Description**
Level 0a | Raw I/Q samples from USRP N210 containing L-3 Cadet packets
Level 0b | Stream of MicroMAS packets in Base64 log files
Level 0c | Ingested MicroMAS packets with units converted and timestamped
Level 1a | Calibrated & geolocated antenna temperatures at native resolution
Summary and Path Forward

- Nanosatellite sounding constellations could provide unprecedented performance at relatively low cost and risk
- MicroMAS will demonstrate a core element of the constellation
- Recent testing has indicated excellent performance
 - 40 RPM scanning; 2W payload power consumption
 - Accuracy and NEDT meet requirements
- July 13, 2014 launch
- Deployment from ISS via Nanoracks in early September
- 468 MHz downlink frequency (OQPSK, 3-MHz bandwidth)

- Microwave Radiometer Technology Acceleration (MiRaTA)
 - Next generation follow-on with multiple bands (temp. and water)
 - 2016 launch (poster on Wed afternoon)