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Picosatellites and Femtosatellites

Sprite chipsat1

7.5 mg, 1×1×0.025 cm
PhoneSat1.02

~1 kg, ~10×10×10 cm

• Picosats(0.1–1 kg) and femtosats(<100 g), are an emerging class of  “ ultra-small” 
satellites  
o Smartphone sized satellites with enhanced MEMS sensors

• Can fly low-cost constellations of  satellites
o Multi -point, simultaneous measurements

Google-HTC 
Nexus 1
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1. Missions requiring coordination and maneuverability ( fleets of s/c)
2. Short orbital lifetime.
3. Limited power and size

Velocity for 
reduced drag 
orientation

velocity for high 
drag orientation

Challenges for Ultra -small Sats

A Rough Estimate of Satellite Lifetime due to Atmospheric Drag

Parameters 1-kg CubeSat 200-g PicoSat 8-g FemtoSat

Dimensions 10x10x10 cm 10x10x2 cm 3.8x3.8x0.1 cm

Configuration
1 face in ram 

direction
Low 
drag

High 
Drag

Low 
drag

High 
Drag

Ballistic 
Coeff . (kg·m-2)

45 45 9 95 2.5

Alt = 300 km weeks weeks days
a 

month
hours

Alt = 400 km months months weeks
several 
months

days

Alt = 500 km ~1 year or more
~1 year 
or more

months ~years weeks

Early concepts 
have no 

propellant so 
the orbital 

lifetime is short
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Concept of ED tethers with pairs of femtosats as 
a maneuverable and coordinated fleet.

Motivation for using Miniature 
Electrodynamic Tethers (EDTs)

• EDT can provide propulsion
o Drag make-up
o Change inclination, altitude, etc.
o No consumable propellant

• Additional benefits of  tether:
o Provided gravity gradient stability
o Tether as antenna
o Ionosphericplasma probe

Can electrodynamic tethers provide ultra -small satellites with lifetime enhancement 
and maneuverability?  Can it provide additional benefits?

Research questions:
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MiTEESystem Concept

• Technology demonstration mission 
• Primary mission: verify a 10 meter long 

tether can provide drag makeup for a 
femtosatellite(smartphone sized satellite) 

• Secondary mission: Can the tether be used 
as an antenna?

• Use as a plasma probe

MiTEE : Miniature Tether Electrodynamics Experiment
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Electrodynamic Tether Propulsion

• Exploits the Lorenz force generated by current flow in a magnetic field

�� �� Earth

_

0
tetherTether amicElectrodyn BLF �³ �u� 

LengthTether

dI
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• The gravity gradient force generates tension in 
the tether

Gravity Gradient Stabilization

• The gravity gradient torque helps align the 
tether along the local vertical

Local Vertical

FC1

FC2

FG2

FG1

CM

Gravity Gradient Forces3
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Tether Overview

• Requirements for Tether Material
o High tensile strength to prevent tether from breaking
o Conductive with insulating overlay
o Semi-rigid

Bent Nitinol
Springs back to 
original shape

• Investigating various materials for use
o Conducting testing on gold plated Nitinol as main 

material base
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Deployment System

• Tether Storage
o Coiled in a figure 8 pattern in spool to minimize tip 

off  dynamics

• Deployment
o Thermal knife cuts fiber that holds back end body
o Spring loaded pegs push end body away
o Investigating methods to prevent bounce back at end 

of  tether

• Micro -Gravity Testing
o Initial testing conducted in house
o Constructed drop chamber to deploy tether
o Will conduct further testing on parabolic flight

SpringLoaded Pegs

Tether Deployment System
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Drag Shield

Inner Structure

Tether Deployment
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Cathode

• Emits electrons from main body of  satellite
• Flying two types of  cathodes 

o Thermionic cathode
• Hot cathode for primary emission

o Field emission array cathode
• Low TRL, cold cathode for demonstration and redundancy

FEAC Cathode4Thermionic cathode
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EPS - HVPS

• High-Voltage Power Supply (HVPS) supplies voltage bias for anode and 
cathode

• Low TRL item never tested in a CubeSat 
• Requirements

o 200 V drop, supplying up to 5 mA
o Low power (< 2 W)
o Small form factor 

• Powered by on-board battery/solar cells

LT3751 IC

Coilcraft DA2032 
Flyback Transformer

HVPS Anode/Cathode System 
Application5
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Communications Overview

• Primary Antenna
o Monopole antenna
o Omnidrectional in azimuth plane
o 90° beamwidth in elevation plane

• Secondary Antenna
o Travelling wave antenna
o Gain 8 dBi at 435 MHz
o Doughnut shaped radiation pattern directed 

towards nadir

• Ground stations
o Ann Arbor, MI
o TBD backup station
o HAM community

Primary Antenna
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Diagnostics Tools

• Langmuir Probe
o Plasma diagnostics tool to measure ambient plasma characteristics
o Deployed off  of  primary antenna boom

• Camera
o Verifies deployment, end body location

• GPS
o Position data

Langmuir Probe

GPS Receiver and Patch Antenna
Camera Location

GPS
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Summer Progress Summary

• Successfully completed a high-altitude balloon flight
o Tested communications and integration of  components
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Summer Progress Summary

• Successfully completed a high-altitude balloon flight
o Tested communications and integration of  components

• Decision to have distributed network of  MSP430s control CubeSat



19

Summer Progress Summary

• Successfully completed a high-altitude balloon flight
o Tested communications and integration of  components

• Decision to have distributed network of  MSP430s control CubeSat
• In-house microgravity chamber and thermionic cathode testing system
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Future Plans

• Heading towards a Preliminary Design Reviewin Fall 2014
• Plan to submit a proposal for launch position
• Submit proposal for reduced gravity flight with NASA
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Questions?
Thank you for your time!
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Backup Slides
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Picosatellites and Femtosatellites

• Can be launched to form low cost constellations if  propulsion source was on 
board 

o Multi -point, simultaneous measurements
o Take in-situmeasurements

DARPA System F6 Constellation Concept3
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System Block Diagram

25
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Operations Overview

Launch from PPOD

Primary Antenna Deployment 
and De-tumble

Tether Deployment 
when Nadir Facing

Science Mission Starts

26



27

EPS Block Diagram
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Link Budget

• Assumptions – UHF downlink at 
435Mhz Reception using 
436CP2UG Antenna from M2inc 
at ground station, 10dB Eb/No 
requirement to get a BER of  1e-
06 using FSK modulation from 
an orbit of  500km altitude.

Item Symbol Units Source Spacecraft to Ground
Frequency f GHz Input Parameter 0.44

Transmitter Power (DC) P Watts Input Parameter 1.50

Transmitter Power Amplifier Efficiency hp -- Input Parameter 0.30

Transmitter Power (RF) P Watts P*hp 0.45

Transmitter Power (RF) P dBW 10 log(P) -3.468

Transmitter Line Loss L l dB Input Parameter -2.000

Transmit Antenna Beamwidth �Œt deg Input Parameter 48.276

Transmit Antenna Efficiency ht -- Input Parameter 0.80

Peak Transmit Antenna Gain Gpt dBi Eq. (13-18b) 12.21

Transmit Antenna Diameter D t m Input Parameter 1.0

Transmit Antenna Pointing Error et deg Input Parameter 10.000

Transmit Antenna Pointing Loss Lpt dB Eq. (13-21) -0.515

Transmit Antenna Gain (net) Gt dBi Gpt + Lpt 11.70

Equiv. Isotropic Radiated Power EIRP dBW P + Ll + Gt 6.23

Propagation Path Length S km Input Parameter 5.000E+02

Space Loss Ls dB Eq. (13-23a) -139.19

Propagation & Polarization Loss La dB Fig. 13-10 -0.5

Receive Antenna Diameter Dr m Input Parameter 2.0

Receive Antenna Efficiency hr -- Input Parameter 0.55

Peak Receive Antenna Gain Grp dBi Eq. (13-18b) 16.60

Receive Antenna Beamwidth �Œr deg Eq. (13-19) 24.138

Receive Antenna Pointing Error er deg Input Parameter 0.130

Receive Antenna Pointing Loss Lpr dB Eq. (13-21) 0.000

Receive Antenna Gain (net) Gr dBi Grp + Lpr 16.60

System Noise Temperature Ts K Table 13-10 or DSN table 135

Data Rate R bps Input Parameter 9600

Modulation Rate -- -- Input Parameter 1.0

Computer Implementation Efficiency -- -- Input Parameter 0.90

Effective Data Rate R bps *See cell 10667

Eb/N o (1) Eb/N o dB Eq. (13-13) 50.16

Carrier-to-Noise Density Ratio C/N o dB-Hz Eq. (13-15a) 90.44

Bit Error Rate BER -- Input Parameter 1.000E-07

Required Eb/N o (2) Req Eb/N o dB Fig. 13-9 12.0

Implementation Loss (3) --- dB Input Parameter -2.0

Rain Attenuation (4) -- dB Fig. 13-11 -1.0

Margin --- dB (1) – (2) + (3) + (4) 35.161

28
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OADCS Overview

• Pre-Deployment nadir pointing accuracy of  10°
• Post-Deployment will rely on gravity gradient for nadir pointing stability
• Rotational stability in-plane to less than 0.2 rad/s

o Out of  plane rotation should be less than 0.01 rad/s

• Actuator
o Magnetorquerswith active control

• Position and attitude determination sensors
o GPS
o IMU
o Magnetometer
o Sun sensor

29
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