Comparison of Maximum Power Point Tracking Techniques in Electrical Power Systems of Cubesats

Jesus Gonzalez-Llorente
Escuela de Ciencias Exactas e Ingenierías
Universidad Sergio Arboleda
Bogotá D.C., Colombia
jesusd.gonzalez@correo.usa.edu.co

Eduardo I. Ortiz-Rivera
Dept. of Electrical and Computer Engineering
University of Puerto Rico-Mayagüez
Mayagüez, Puerto Rico
eortiz@ece.uprm.edu

27th Annual AIAA/USU Conference on Small Satellites
August 10 - 15, 2013
Agenda

• Introduction
 – From Libertad 1 to Libertad 2

• The problem
 – Selection of MPPT algorithm for EPS

• Method
 – Simulation over one orbit of MPPT techniques

• Results
 – Comparison of Energy for each Technique
 – Future work
Introduction

- Classification: Nanosatellite
- CubeSat (Academic)
- Application: Earth Observation
- Orbit: LEO
Introduction

Ground Station
Introduction

1. Development of an image acquisition system for Cubesat

2. Optimization of power systems
The problem

Perturb-and Observe (P&O)
Linear Reoriented Coordinates Method (LRCM)
The problem
Environment conditions

Sunlight

Illuminated area

Dark area

![Graph showing irradiance over time for different sides of the Earth.](image-url)
Environment conditions
Results

![Graph showing power and time]
Results
Results
Results
Conclusions

• The ideal operating point of the PV cells was estimated during the orbit sunlight period to be used as a benchmark for the MPPT comparisons

• Both MPPT methods presented a similar performance over an entire sunlight period
Conclusions

• An effective operation of LRCM requires precision in the mathematical model of the PV panel.
• LRCM could be implemented without the disconnection of the PV panel.
• In the case of P&O method, a careful selection of the sampling time and the step size must be done for its correct operation.
Future work

• Different situations without attitude control are being analyzed to know the performance of the MPPT
Future work
Future work

1. Experimental validation

2. Experimental validation
Thank you!

Comparison of Maximum Power Point Tracking Techniques in Electrical Power Systems of Cubesats

Questions?

Speaker:
Jesús González-Llorente
jesusd.gonzalez@correo.usa.edu.co

Technical Director of Libertad 2:
Jorge.soliz@usa.edu.co
References

• of Kentucky. 2011.
References

• Azur Space. 30% Triple Junction GaAs Solar Cell. 2012. Available at: http://azurspace.de/index.php?mm=162.
References

• Erb D. Evaluating the Effectiveness of Peak Power Tracking Technologies for solar array on small spacecraft. Master Thesis. University
Lighting

Satellite-Libertad2: Lighting

Sunlight Times

Global Statistics

<table>
<thead>
<tr>
<th>Time Type</th>
<th>Min Date</th>
<th>Min Time</th>
<th>Max Date</th>
<th>Max Time</th>
<th>Mean Duration</th>
<th>Total Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Duration</td>
<td>19 Jan 2015</td>
<td>17:00:00.000</td>
<td>19 Jan 2015</td>
<td>17:52:28.764</td>
<td>3148.764</td>
<td></td>
</tr>
<tr>
<td>Max Duration</td>
<td>26 Jan 2015</td>
<td>14:00:18.598</td>
<td>26 Jan 2015</td>
<td>15:27:20.599</td>
<td>4742.002</td>
<td></td>
</tr>
<tr>
<td>Mean Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4699.866</td>
<td></td>
</tr>
<tr>
<td>Total Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>479386.290</td>
<td></td>
</tr>
</tbody>
</table>

Penumbra Times

Global Statistics

<table>
<thead>
<tr>
<th>Time Type</th>
<th>Min Date</th>
<th>Min Time</th>
<th>Max Date</th>
<th>Max Time</th>
<th>Mean Duration</th>
<th>Total Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.947</td>
<td></td>
</tr>
<tr>
<td>Total Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5039.383</td>
<td></td>
</tr>
</tbody>
</table>

Umbra Times

Global Statistics

<table>
<thead>
<tr>
<th>Time Type</th>
<th>Min Date</th>
<th>Min Time</th>
<th>Max Date</th>
<th>Max Time</th>
<th>Mean Duration</th>
<th>Total Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Duration</td>
<td>26 Jan 2015</td>
<td>15:27:45.967</td>
<td>26 Jan 2015</td>
<td>15:47:13.405</td>
<td>1167.437</td>
<td></td>
</tr>
<tr>
<td>Mean Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1191.825</td>
<td></td>
</tr>
<tr>
<td>Total Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120374.327</td>
<td></td>
</tr>
</tbody>
</table>
• Semieje mayor=7100 (700 km sobre la superficie terrestre)
• Eccentricidad=0.009
• Inclinación=98 grados
• Longitud de nodo ascendente=191 grados
• Argumento del perigeo=189 grados
• Anomalía verdadera=0 grados