Dependable Multiprocessor: An Application Approach

Morehead State University
Asst. Prof. Kevin Brown
SmallSat CubeSat 08/10//2013
Presentation Overview

- The Team
- The Dependable Multiprocessor
- The CubeSat Host
- Conclusion
Presentation Overview

- The Dependable Multiprocessor Team
 - Morehead State University
 - Kevin Brown, Ben Malphrus, et al
 - Honeywell
 - John Samson, et al
 - Radiance Technologies
 - Kathy Byrd, et al
 - Funders: NASA, Army, Honeywell, MSU
The Dependable Multiprocessor

• NASA Sponsored Dependable Multiprocessor (DM) Technology
• Cluster of high performance COTS processors are grouped to mitigate space environment effects
• DM Technology is a middleware package. It is Flexible, Scalable, Low Overhead, Easy to Use
The Dependable Multiprocessor

- DM is NOT the hardware – DM is a hardware independent set of middleware and management system for a set of processing nodes.
The Dependable Multiprocessor

- Provides more payload processing capability within given size, weight, power & cost constraints
- Supports easily programmable, adaptable, scalable, parallel processing
- Software-enhanced SEE tolerance for COTS
 - rapid autonomous recovery from SELs, SEFIs, & SEUs
 - high Availability & Reliability (Computation Correctness)
- Offers 10X – 100X higher throughput density compared to software programmable rad hard processing solutions
The DM: Hosts

NASA ST8 Honeywell Gumstix
Building a CubeSat Host

- First a host processor must be selected
 - Gumstix – Earth
 - Reasonable price, COTS
 - Small to fit in within CubeSat
 - Demonstration boards
 - Established Linux software
Building a Host

• A Node
 – Nodes must communicate
 – Ethernet network
 • 100 Mbps LAN
 – Gumstix Processor module does not contain a PHY layer
 – Gumstix has high density low profile connector
Building a Host

• Subsystem board
 – Mechanical
 • Retain each node
 • Interface to each node
 • Thermal management
 – Independent node management
 • Power sensing (I/V)
 • Power switching
 • Reset
Building a Host

- **Backbone**
 - Central Ethernet switch
 - 100 Mbps satellite connection to cluster
 - Power Regulation
 - Power Distribution
 - Telemetry UART
 - Node UARTs, Reset, etc
Building a Host

• Mechanical
 – Core 75mm x 75mm x 35mm
 – Legs to 97 mm
 – Legs conduct all heat to exterior faces then to satellite frame
Building a Host

• The Cluster
 – Installation by exterior screw
 – Interface by Samtec SFSD connector
Conclusions

Host system successfully demonstrated DM system with a 5 MP imager. Compressed images were sent as telemetry in different compression sizes. System is sized for the CubeSat form factor for future mission needs.
Contacts:
John Samson - Honeywell
Ben Malphrus - MSU