
5

ISIS – Innovative Solutions In Space

Don’t Worry, We’ll Fix it in Software

Maxime Castéra

CS Summer Workshop – Logan USA 08/2012

Summary

• The software Myths
• The software project cycle
• The flight software
• The embedded stack
• Sw / Hw interaction phases
• Subsystems VS Systems testing
• Pitfalls to be avoided
• Conclusion

Software Myths

• Flexibility of the software
• Software effort estimation
• Re-usability
• Maturity / Testing of the software
• Bug fixing
• Fixing everything ‘later’ in software

The software project cycle

The software project cycle

- Flow-down software and hardware
requirements from the mission requirements
=> Not the opposite.

- Involve the software team early on in the

mission definition.

- Plan testing early enough.

- Document every step.

The flight software

• On-board Computer
– Definition of the databus
– Overall satellite operational modes
– Flight scheduling
– Command and Data Handling

• ADCS Computer
– Sensors reading
– Actuators commanding
– Attitude determination algorithms

• Local intelligence of the subsystems
– Housekeeping data collection
– Command handling

The embedded stack

OBC Hardware

Hardware Abstraction Layer (HAL)

ISIS Library

Antenna
Systems TRXUV

Custom flight software

EPS

IMTQ

CDHS Control
Software P/L specific

Flight scheduler

Sw / Hw interaction phases

• Stubbing phase
– When hardware not available
– I/F being defined

• Development board phase
– When hardware not finalized or fully defined
– I/F still open

• Breadboard phase
– When hardware characterized and under-test
– I/F frozen

• EM phase
– When hardware on the table

Subsystems VS Systems testing

• Subsystems testing
– Unit testing on embedded systems

– Regression testing

• System testing
– Flat sat setup
– Hardware stubbing
– Full stack testing

• E2E testing
– Gaining uptime
– Full chain testing

Pitfalls to avoid

• Involving software people too late.
• Involving software people too early.
• Underestimating the need for mission

specific knowledge.
• Cutting corners on software testing.
• Excessively re-using old software.
• Changing databus philosophy late in the

project.
• Assuming that writing flight software is the

same as regular software development.
• Forgetting that your code will be in space.

Conclusion

• Software can’t fix everything
• Proper interfaces are everything
• Involvement of the team is critical
• Educate the software team
• Let the software team educate you

• An untested software is nothing else

than a project risk

Maxime Castera – m.castera@isispace.nl - www.isispace.nl - www.cubesatshop.com

	ISIS – Innovative Solutions In Space
	Summary
	Software Myths
	The software project cycle
	The software project cycle
	The flight software
	The embedded stack
	Sw / Hw interaction phases
	Subsystems VS Systems testing
	Pitfalls to avoid
	Conclusion
	Slide Number 12

