Highly Integrated Design Approach For High Performance CubeSats
Tyvak™ Company Background and Overview

- **Tyvak™ was Created to Address Unfulfilled and Growing CubeSat Needs**
  - Feedback From Customers Concerned that Needed Performance and Complete Solutions Were Not Supported by Existing Component & Kit Focused Suppliers
  - Advanced “Next Generation” CubeSat Components & Complete Vehicles To Support Operational and Scientifically Relevant Missions
  - Provide Complete Program Life-Cycle Expertise and Mission Development

- **The Tyvak™ Team Brings Experience and Unique Skills in CubeSats**
  - Co-Founders Scott MacGillivray and Jordi Puig-Suari Leaders in CubeSat Community
  - Experienced Developing, Testing, Operating and Launching “First Generation” CubeSats

- **Tyvak™ is Currently Undergoing Start-Up Operations**
  - Defining Details of Initial Products
  - Initial R&D and Consulting Services Work

- **Wide Range of Products and Services**
  - Complete CubeSat Bus and Vehicles for Advanced Missions
  - Direct Sales of Key Components and Product Suites to Support Other Organization’s In-House Projects
  - Research and Development of Advanced “Next Generation” Products
  - Consulting Services for Mission and Vehicle Design
  - Launch Integration Services

- **Quick Response and Low Cost Solutions**
  - Experienced in Rapid Turn-Around Projects
  - Focus on Value-Added Work to Maintain Low Operating Cost Infrastructure

- **Blend of Creativity and Proven Engineering Expertise**
  - Custom Products and Services From Advanced Components to Full Space Vehicles
  - New Mission and Space Vehicle Approaches that Leverage the Unique Features and Capabilities of CubeSats
Diversification and Maturing of the CubeSat Marketplace

- **CubeSat Principles Were Built Upon Keeping It Low Cost and Therefore Accessible on University Budgets**
- **As With Most New Technologies, It Is Morphed by Other Parties Who See Its Potential (Visionaries)**
- **CubeSat Technologies Are Moving To The Point Where People Are Thinking of Real Applications (Pragmatists)**
  - Have we crossed the technology chasm?
- **Diversification is Evident with Wider Variation of Educational and Industry Applications (e.g., NSF, Colony II, SENSE, GAINSTAM)**

Ref: Moore, Geoffrey *Crossing the Chasm*
Growing Need for Mission Assurance and Advanced Capability

- Need to Balance with Keeping CubeSats Simple and Low Cost

• As a Natural Progression of Technology, Things Become Increasingly Complex and More Diversified

• In The Beginning…
  – Predominantly 1U CubeSats
  – Simple payloads
  – Mission life of weeks to months
  – Simple attitude control
  – Simple communications leveraging amateur equipment
  – ‘Disposable’

• … Progressing To …
  – Numerous 3U CubeSats
  – Multiple payloads on a single CubeSat
  – Mission life of greater than a year
  – Precision 3 axis attitude control
  – Higher frequencies, larger bandwidth, and increasing COMSEC requirements
  – ‘Higher Reliability’
Subsystem Performance Will Continue to Increase
- *Driven by Mission Needs and Technology Development*

<table>
<thead>
<tr>
<th>Subsystem/Requirement</th>
<th>Parameter</th>
<th>[units]</th>
<th>Current * [Today]</th>
<th>Mid-Term [3 - 5 Years]</th>
<th>Far-Term [5 - 10 Years]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C&amp;DH</td>
<td>Performance</td>
<td>MIPS/W</td>
<td>&lt; 500</td>
<td>&lt;1000</td>
<td>&gt;2,000</td>
</tr>
<tr>
<td></td>
<td>Storage</td>
<td>[GB]</td>
<td>&lt; 4?</td>
<td>&lt; 24</td>
<td>&gt; 64</td>
</tr>
<tr>
<td>TT&amp;C</td>
<td>Frequency</td>
<td>[Band]</td>
<td>UHF/ISM</td>
<td>S-Band</td>
<td>X-Band</td>
</tr>
<tr>
<td></td>
<td>Bandwidth</td>
<td>[kbps]</td>
<td>&lt; 50</td>
<td>&lt; 500</td>
<td>&gt; 2,000</td>
</tr>
<tr>
<td></td>
<td>Data Security</td>
<td></td>
<td>AES/256</td>
<td>NSA Type 1</td>
<td>NSA Type 1</td>
</tr>
<tr>
<td>ADCNS</td>
<td>Knowledge</td>
<td>[deg]</td>
<td>&lt; 0.02</td>
<td>&lt; 0.005</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>[deg]</td>
<td>&lt; 0.5</td>
<td>&lt; 0.05</td>
<td>&lt; 0.01</td>
</tr>
<tr>
<td></td>
<td>Navigation</td>
<td>[m]</td>
<td>&gt; 200</td>
<td>&gt; 50</td>
<td>&lt; 10</td>
</tr>
<tr>
<td>Propulsion</td>
<td>Delta-V</td>
<td>[m/s]</td>
<td>&lt; 25</td>
<td>&lt; 600</td>
<td>&gt; 1,000</td>
</tr>
<tr>
<td></td>
<td>Thrusters</td>
<td>[#]</td>
<td>1 - 2</td>
<td>&lt;= 8</td>
<td>&gt; 8</td>
</tr>
<tr>
<td></td>
<td>I&lt;sub&gt;sp&lt;/sub&gt;</td>
<td>[s]</td>
<td>&lt; 60</td>
<td>&lt; 280</td>
<td>&lt; 320</td>
</tr>
<tr>
<td>EPS</td>
<td>Storage</td>
<td>[W-hr]</td>
<td>&lt; 50</td>
<td>&gt; 100</td>
<td>&gt; 200</td>
</tr>
<tr>
<td></td>
<td>P/L OAP</td>
<td>[W]</td>
<td>&lt; 4?</td>
<td>&gt; 10</td>
<td>&gt; 20</td>
</tr>
<tr>
<td>Special Needs</td>
<td>Prox Ops</td>
<td></td>
<td>No</td>
<td>&lt; 5km</td>
<td>&lt; 200 km</td>
</tr>
<tr>
<td></td>
<td>Re-Docking</td>
<td></td>
<td>No</td>
<td>Simple</td>
<td>Complex</td>
</tr>
<tr>
<td></td>
<td>Re-Fueling</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Mission Assurance</td>
<td>Redundancy</td>
<td>[strings]</td>
<td>None - Minimal</td>
<td>Selective</td>
<td>Multi-String</td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
<td>[%]</td>
<td>&lt; 80%</td>
<td>&gt; 80%</td>
<td>&gt; 95%</td>
</tr>
<tr>
<td>Mission Life</td>
<td></td>
<td></td>
<td>&lt; 1</td>
<td>&lt; 3</td>
<td>&lt; 7</td>
</tr>
</tbody>
</table>

* Generally known to have flown
Technology Needs are Inter-Related
- Additional Capability Needed to Enable New CubeSat Missions

Note: Values are Notional

Evolution of Nano-Satellites - Capability Growth is Inter-Related

- Processing Power
  - 8-bit MCU / no RTOS
  - 16-bit MCU
  - 32-bit GPP / RTOS

- Attitude Control
  - Passive / No control
  - Active / Mag / Sun
  - Active / RW / Sun / Star

- Comm Bandwidth
  - 1-2 kbps
  - 10’s kbps
  - 100’s kbps

- Electrical Power
  - 10’s W OAP
  - 100’s mW OAP
  - 1’s W OAP

- Mission Life
  - 1-3 months
  - 6-12 months
  - 1-3 years

Challenge: How to Package More Capability into CubeSat Envelope
New Approach Needed to Support Highly Integrated Systems

Current Approach to Small Satellites

Collection of Subsystems (Integration of boxes and systems)

SoA Space-Rated Boxes / Components (smallest mass, power, and size)

Examples:

AFRL Plug & Play Sat

~120kg

LM ANGELS

~50kg

SpaceDev SENTRI

~25kg

Needed Approach to Get To Ultra Low Power & Size

Highly Integrated System (Integration of lower level components)

SoA Space and Commercial Components (smallest mass, power, and size)

Examples:

Boeing Colony II Bus

Cal Poly CP2 CubeSat

SSTL Snap

1kg

4 kg

6-12kg
Unique Needs of Miniature, High Performance Systems
- A Different Design Approach is Required

• **Miniaturization Requires a Highly Integrated System Solution Approach**
  - Can’t just bolt together group of disparate components
  - Need to be designed as an Integrated System
  - Kit and modular approach can support low tech needs, but not high performance

• **Personal Computer**
  - Plug and Play allows for rapid customization by end user, however is highly inefficient packaging

• **Laptops and Smartphones**
  - Specialized components and design approach needed to provide highly efficient packaging

Not Just Smaller Components!
Examples of Other Complex Miniature Systems

- Utilize Different & New Approaches to Fabrication and Assembly

• Use of Novel Manufacturing Technologies
  – Printed Circuit Boards as Structural and Multi-Functional Elements
  – MEMS Technology
  – Rapid Prototyping; plastics and metals
  – Other Manufacturing Materials and Processes
    • Etched Ceramics, Layered Metal Foils, etc.

• Require Many Similar Functions to Space Vehicles
  – Attitude Determination and Control
  – Power Storage
  – Ultra-Low Power Use
  – Communication Interfaces

• Modularity Becomes Less Beneficial
  – The “Module” May Now Be at The System Level
The Tyvak™ **Intrepid** Pico-Class CubeSat Suite  
*Integrated High Performance System Bundle*

- **Intrepid System Board**
  - 400Mhz ARM Processor; >512MB of Storage, 64MB RAM at <0.3 Watts
  - Embedded Linux
  - Integrated Power Regulation System and Sensor Suite
- **Low Profile UHF Radio Daughterboard**
  - 1W RF Out, Up to 250 kbps
- **Multi-Functional Side Panels**
  - 28% Solar Cells, Sensors, Torque Coils
- **High Strength Aluminum Structure**
  - “Pegboard” of Mounting Holes
- **Software Tools**
  - Open Source OS and Drivers
  - Simple Development Platform Available
- **Minimal Bus Volume**
  - Core Avionics, EPS, Communication, and Payload Interface in a 9 x 9 x 3 cm Package

For The Latest Tyvak™ **Intrepid** System Board and Suite Info:
Tyvak™ CubeSat Product Family
- Suites of Highly Integrated High Performance Products

Two Complementary Product Groups

- "Pico-Class" CubeSats
  - Advanced Core Capabilities: System Board & Suite

- "Nano-Class" CubeSats
  - Cutting Edge Capabilities: Higher Power, Precision Attitude Knowledge & Control, Radiation Tolerant, High Bandwidth, Fault Handling
Thank You!