Closing the Link

Communication System Technology Developments

Joost Elstak
Contents

- Introduction
- Need
 - Current Challenges
 - The QB50 example
- Solutions
 - Software Defined Radio
 - Spread Spectrum
 - Ground Station
- Implementation
 - Next generation Tx, Rx, Trx
 - Next generation Ground Stations
- Conclusions
Challenges
Current Comms Challenges

• Increase data transfer
 – Increase data rate
 – Increase contact time

• Operate in constellations/clusters
 – Inter-satellite interference
 – Communication with multiple satellites

• Finding a solution within CubeSat constraints is very challenging
 – Form, Fit, Function
 – Programmatics (time & money available)

• Do better in a more challenging environment
The QB50 example

- Initiative lead by von Karman Institute
- Constellation of 50 2U Cubesats
- Single launch deployment
 - 300 km, 80° inclination
 - 3 - 12 weeks lifetime
- In-situ measurement of the lower thermosphere
 - Standard sensors suite
 - Measurement during orbit decay
- Expected KO Q4 2011
- Expected launch 2013-2014
ISIS in QB50

- Launch service providers
- Communication WP

Main interface between:
- Launcher
- Cubesat teams
- Ground stations
Challenges in QB50

• Launch
• Operations
• Communications
Challenges in QB50

• Launch
 – 50 Cubesats in one launch
 – 50 development teams
 – Different mass, ballistic coefficient, etc...
 – Possible collisions between satellites

• Operations

• Communications
Challenges in QB50

- Launch
- Operations
 - Extremely short lifetime (3 - 12 weeks)
 - Extremely short commissioning (~ 1 day)
 - Short satellite passes:
 7 min max at the beginning
 4 ÷ 5 min max at the end
 - TLE not reliable during decay
 - Scientific data cannot be lost
- Communications
Challenges in QB50

- Launch
- Operations
- Communications
 - 10 ÷ 30 sats visible at the beginning at the same time
 - 2 ÷ 5 sats visible at the end at the same time
 - Limited spectrum available (Radio Amateur bands, VHF / UHF / S)
 - Limited power onboard
 - Single satellite tracking is not efficient
Software Defined Radio

- Move complexity to Software
- Standard hardware platform
- High flexibility (modulation / datarate)
- Simple reconfiguration / upgrade

SDR Transmitter / Transceivers

Ground station Transceiver
Software Defined Radio

• Bandwidth efficient modulations:
 – BPSK, QPSK
 – Variable datarate: 1.2 ÷ 1000 kbit/s
 – Good performances with noise

• Advanced channel access mechanisms can be used
 – FDMA & TDMA can have a lower efficiency (frequency drift, clock drift)
 – CDMA can be a viable alternative
Code Division Multiple Access

- Used in 3G phones
- Spectrum is spread over a wider bandwidth using a pseudo-random noise generator
- Less interferences due to narrow-band signals
Increase contact time

- Ground station network
 - Automatic data delivery
 - Ex: RASCAL, GENSO
- All limited to 1 satellite at once
 - Limiting factor for QB50
 - Requires ground station capable to receive multiple satellites at once
 - Massive increase in contact time
Omnidirectional ground station

- Tracking ground station has limited field of view
 - Limited by antenna beamwidth
- Omni-directional ground station can monitor the whole sky
 - Simultaneous multiple satellite reception: 10 ÷ 20 in QB50
 - Requires a more complex receiver
 Multiple simultaneous SDR receivers
 - TLE are not necessary:
 They can even be computed!
Omnidirectional ground station

- Omni-directional
 - Cheap setup, easy installation
 - Omni-directional antenna: ~3 dB gain
 - Low datarate: 1.2 ÷ 9.6 kbit/s
 - Simple requirements for roof mounting: no moving antennas, small area required
 - Multiple receivers
 - Medium computational power required
 - Can compute satellite TLEs
 - GPS receiver for precise frequency, time and position reference
Higher Speed: S-band

- Wider bandwidth available
 - Amateur: 2 MHz
 - Commercial: requires license

- High datarate possible
 - $38k4 \div 1000$ kBit/s

- Short contact time
 - 5 min pass
 - $6 \div 18$ Mbyte per pass
S-band

• Communication is limited by average power consumption (~1.5 W avg per orbit)
• Attitude control may be needed depending on satellite antenna
 – Complex during orbit decay
 – Can be compensated with a higher antenna gain on ground
• Downlink in radio-ham frequencies or commercial S-band (shared)
 – Maximum speed should be traded with available bandwidth and number of users
Next Generation Transceivers

- **TrxUV/TRXVU**
 - High output power (up to 1 W)
 - BPSK and QPSK
 - Fully software defined transmitter

- **Availability:** H1 2012
Next Generation Transmitters

• TXS-100/1000
 – Fully software defined transmitter
 – BPSK, QPSK and GMSK capable
 – Datarate up to 1Mbit/s
 – > 27 dBm output power
 – < 4 W power consumption

• Availability:
 – 38k4: Now
 – 100 kbit/s: Q4 2011
 – 1 Mbit/s: Q2 2012
Next Generation Ground systems

• Completely software defined
 – Datarate, modulation and frequency agile
 – Replacement for out of stock ICOM-910H
 – Wideband receiver, datarates up to 1 Mbit/s available

• VHF / UHF / S-band
 – Up to 3 m dish
 – Radome available for hostile environments

• Central control console for easy operations

• Omnidirectional systems investigated
Conclusions

• Challenges
 – Do better in a more challenging environment
 – Maximizing data received within challenging CubeSat constraints
 – Operate constellations

• Solutions
 – System level optimization
 – New technology implementations on ground and in space

• Current technology and smart solutions can solve these problems
Code Division Multiple Access

- Pseudo-random noise helps in spreading the bandwidth
- If the pseudo-random sequence is known, data can be de-spread
- If the sequence is unknown, the signal looks like white noise
- Multiple sources can use the same channel without interference
Channel coding

- **FEC gives high gain in link budget**
 - AO-40: ~5 dB gain @ BER = 10^{-6}
 - AO-40: 40% code rate

- **Limited use in Cubesats**
 - Usually link budgets were not critical, a higher antenna gain or output power was possible
 - Channels are usually bandwidth limited
 - AX-25 does not support it natively (FX-25)
 - Added complexity, longer development time
Channel coding in QB50

• It does not need to be compliant with AX-25
 – No TNC available for BPSK, QPSK
 – SDR or soundcard modem needed
 – Protocol should be public
 freely available software decoder would be a plus

• Many new developments in the amateur world are going this way (ARISSat)
 – AX25-like protocol, with convolutional codes
S-band

- Communication is limited by average power consumption (~1.5 W avg per orbit)
 - 5 ÷ 10 W power consumption for few minutes every orbit
 - Only one ground station contact per orbit
- Attitude control may be needed depending on satellite antenna
 - Complex during orbit decay
 - Can be compensated with a higher antenna gain on ground
- Requires precise TLEs
 - Complex during orbit decay
 - Use VHF/UHF beacon for more precise tracking
Omnidirectional ground station

- Beam steering antenna array
 - No moving parts
 - High gain
 - Multiple satellites visible: 10 ÷ 20
 - Requires a quite complex receiver
 Multiple simultaneous SDR receivers
 - High computational power required