ISIS – Innovative Solutions In Space

ISIS Missions, Services and Technology Trends

Abe Bonnema, Marketing Director

CS Summer Workshop – Logan USA 08/2011
Contents

• Introduction: 5 years of ISIS

• ISIS Missions & Platforms

• CubeSatShop.com

• ISILaunch Services

• Technology Progress & Trends

• Conclusions
Why start a space company?

"The way to make a small fortune in space is to start with a big fortune.

Space is a good place to lose a lot of money real fast."

John Pike
American Federation of Scientists
ISIS – 5 years old

- January 06, 2006 - founded as Spin-off of Delfi-C3
- March 2006 – moved to first office: 5 people, 18 m2 office
- Summer 2007 – first products sold and delivered
- April 2008 – Launch of Delfi-C3 gave first heritage of designs
- May 2008 – moved to new office: ~10 people, 200 m2 office
- July 2009 – first daughter companies:
 - Innovative Space Logistics – for the ISILaunch Services
 - Innovative Data Services – for applications
- September 2009 – ISILaunch01 launched 4 European CubeSats
- July 2010 – moved to new building: ~20 people, 400 m2 office
- March 2011 – delivered full CubeSat Development Kits
- June 2011 – delivered full CubeSat Mission & Ground Station
ISIS – 5 years old

Current Status:

• August 2011 (now): 32 people, 650 m² office
 – 80 m² Clean Room
 – Ground Station + Mission Control Center
 – Test facilities

• From subsystem developer to system integrator with end-to-end solutions:
 – Mission definition
 – System design & development
 – Assembly, integration & verification
 – Launch Services
 – Mission operations
 – Applications
Company Structure

- Separate ‘business units’ for:
 - Missions, Platforms, Custom systems
 - Off-the-shelf systems from CubeSat system developers
 - Small Satellite Launch Services
 - Nanosatellite Applications
ISIS Missions & Platforms

• Development kits:
 – Flight representative hardware
 – Ground Support Equipment included
 – Training and fast project initiation

• Platforms / Busses:
 – All necessary avionics, solar panels, etc.
 – Custom payload interfaces
 – Engineering Models / Flight Models
 – Ground Support Equipment

• Complete Missions:
 – Full satellite platforms incl. payload (integration)
 – Mission software development
 – Ground segment, Launch Services, Mission operations
Development Kit

• Developed for: SUPAERO University, France
• Used for training of student teams in education

• 2U CubeSat setup:
 – Power System
 – Computer
 – Transceiver
 – Antenna module
 – GSE interfaces

• Basic functionality embedded
• Ground Support Equipment:
 – Mechanical jigs
 – Power/data interfaces
 – RF checkout box
FUNcube Platform

- Developed for AMSAT-UK
- Used for educating young people about radio, space, physics and electronics.

1U CubeSat

AMSAT-UK:
- Payload development
- Control board development
- Mission Control SW

ISIS:
- Platform development
- Payload Board Manufacturing
- System level Assembly, Integration and Verification
- Arrange for Launch
NanosatC-BR Platform & GS

• Developed for Brazilian Space Agency INPE and University of Santa Maria
• Used as educational magnetometer mission

• 1U CubeSat
• Full EM and FM Platform
• Payload interface support
• Ground Support Equipment
 – Mechanical jigs & tooling
 – RF Checkout equipment
• Turnkey Ground Station
 – On-site installation
 – On-site training
• Delivered end of June
Carbon Monitoring Mission & GS

- Developed for Indian university customer
- Used as educational mission for carbon monitoring with a Thoth Argus spectrometer

- 2U CubeSat
- Full EM and FM Mission
- Payload interfacing
- Mission control software
- Ground Support Equipment
- Turnkey Ground Station
- On-site training and support
- Delivered in June
- Training in July
CubeSatShop.com

- One-stop-shop for CubeSat & nanosat systems
- Single point of contact for inquiries, purchasing, technical and after sales support
- Many partners for all different categories
- And we keep expanding …
ISILaunch Services

www.ISILaunch.com

“Our mission is to launch yours …”
Example: ISILaunch01 on PSLV (2009)

- Successful launch campaign (ISILaunch01)

ISILaunch

PSLV-C14

BEESAT SwissCube

ITUpSAT1 UWE-2

UWE-2 BEESAT ITUpSAT1 SwissCube
Cooperation between ISL and Spaceflight Services

• Access to all international launch opportunities
• Clustering satellites from all over the globe
• Flexibility in launch contracting

… but it’s (still) not easy…
A launch provider perspective:

Goals:

- optimal use of launch vehicle capacity
- flexibility of having ‘gap-fillers’ on the shelf
A satellite developer perspective:

Goals:

• multiple launch opportunities to choose from
• flexibility of having ‘backup launches’ available
• airline ticket approach to booking a launch
Upcoming opportunities

<table>
<thead>
<tr>
<th>Date</th>
<th>Orbit</th>
<th>Vehicle</th>
<th>Containerized Payloads</th>
<th>Other Micro</th>
<th>Lightband Adapter type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1U</td>
<td>2U</td>
<td>3U</td>
</tr>
<tr>
<td>Q4 2011</td>
<td>250 x 265 km, 51.6°</td>
<td>US</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q1 2012</td>
<td>650-700 km circular, SSO</td>
<td>Russian</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Mid 2012</td>
<td>550-600 km circular, 65°</td>
<td>Russian</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Mid 2012</td>
<td>~2000x3600 GTO</td>
<td>Russian</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>H2 2012</td>
<td>600-700 km circular, SSO</td>
<td>Russian</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Q4 2012</td>
<td>350 x 750 km, 52°</td>
<td>US</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q4 2012</td>
<td>750 km circular, 52°</td>
<td>US</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q4 2012</td>
<td>600-700 km circular, SSO</td>
<td>Indian</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Q1 2013</td>
<td>450-550 km circular, 79°</td>
<td>Russian</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q1 2013</td>
<td>650-500 km circular, SSO</td>
<td>European</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>H1 2013</td>
<td>500-600 km circular, 65°</td>
<td>US</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>H1 2013</td>
<td>~2000x36000 GTO</td>
<td>Russian</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>H1 2013</td>
<td>600-800 km circular, SSO</td>
<td>Indian</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q3 2013</td>
<td>700 km circular, SSO</td>
<td>US</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q3 2013</td>
<td>620 km circular, SSO</td>
<td>US</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>H2 2013</td>
<td>450-550 km circular, 79°</td>
<td>Russian</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q4 2013</td>
<td>720 km circular, SSO</td>
<td>US</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q4 2013</td>
<td>600-650 km circular, SSO</td>
<td>Russian</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>H1 2014</td>
<td>~2000x36000 GTO</td>
<td>Russian</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>H1 2014</td>
<td>450-550 km circular, 79°</td>
<td>Russian</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q3 2014</td>
<td>GTO / GSO</td>
<td>US</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q3 2014</td>
<td>Low Lunar Orbit</td>
<td>US</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q4 2014</td>
<td>600 km circular, SSO</td>
<td>US</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>H1 2015</td>
<td>450-550 km circular, 79°</td>
<td>Russian</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Q2 2015</td>
<td>600 km circular, SSO</td>
<td>US</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
QB50 – Launching 50 Cubes

• “An international network of 50 CubeSats for multi-point, in-situ measurements in the lower thermosphere and for re-entry research.”

• Launch of 50 CubeSats to very Low Earth Orbit (~320 km) using Shtil-2.1 in 2014

• Pre-cursor flight with Shtil-1 in 2013
QB50 – Launching 50 Cubes

• How to fit 50 CubeSats in the limited available mass and volume of a Shtil-2.1 …?

From ‘QuadPack’ for Shtil-1 to full integrated deck on Shtil-2.1
Trends: Numbers

More small satellites, nanosatellites and CubeSats, driven by availability of miniaturized / commercial components

In numbers (estimated):

2005: few 1U/3U CubeSats (~10)
 few nanosatellites

2010: many 1U/2U/3U CubeSats (~250)
 6U and higher upcoming
 various nanosatellites

Various CubeSat and nanosatellite constellations of 10 or more CubeSats planned for the coming years.
Trends: Technologies

• Higher performance – a circle:

- Data rates
- Link Margin
- Frequencies

COMMS

- Stabilization
- Pointing
- Accuracy
- Agility

POWER

- Orbit average power
- Solar panels
- Deployables
- Battery sizing

CONTROL

...
Trends: Improved capabilities

• From 1U to 12U
 – Accommodating more voluminous payloads

• Deployable Solar Arrays
 – Accommodating high power payloads

• Startrackers, CMG’s
 – Accommodating highly agile payloads
 – Accommodating more capable imagers

• High end on board processing
 – Signal processing payloads
 – Image compression
Trends: Improved Quality

- Improving success rate of CubeSat missions

- Making the most of single string designs
 - High quality parts
 - Improved systems engineering

- Leveraging know-how from ‘traditional’ space organizations
 - Beefing up Qualification Testing
 - Miniaturizing high end concepts
New small launch vehicles:

- Shtil 2.1
- Vega
- Soyuz-1
- PSLV-mini
- Epsilon
- Air launched
Trends: Improved Access

- Clustering of payloads
- Rideshare on large vehicle
- ‘Dedicated Cluster Launches’ (e.g. QB50)
Conclusions

- CubeSats are evolving fast:
 - Fast increasing numbers …
 - Higher performance, higher quality missions
 - From 1U/3U to 6U/12U

- Traditional bottlenecks still apply:
 - More data -> more power -> better control -> etc

- Constellations for scientific and commercial app’s

- Access to space is still a key issue – may be for a while if the number of CubeSats keeps increasing

- But still … building CubeSats is still a lot of fun!
Thank you for your attention!

We’ve made it through the first 5 years … looking forward to the next 5! 😊

Abe Bonnema
Marketing Director
e-mail: a.r.bonnema@isispace.nl

Molengraaffsingel 12-14
2629 JD Delft, The Netherlands

web: www.isispace.nl | www.isilaunch.com
 www.cubesatshop.com | www.innovativedataservices.com
Celebrate with us ... you’re invited:

September 1st, 2011

Delft Nanosatellite Symposium

www.isispace.nl/symposium