LANL CubeSat Reconfigurable Computer (CRC)
LANL history in space

Operational Sensors

Vela W-Sensor

GPS IIA/IIR W-Sensor

GPS IIF V-Sensor

R&D Sensors

ALEXIS/Blackbeard

FORTE

Cibola Flight Experiment

CubeSat ?

Cibola Flight Experiment (CFE)

- **Project Objectives**
 - Technology Demonstration: responsive, flexible multi-mission RF payload with continuous data processing
 - Reconfigurable Computing (RCC) technology for super-computer processing speeds at sensor
 - Adaptability: Re-configurable post-launch
 - Smart and adaptive computing at sensor for enhanced sensitivity and reduced data downlink

- **Technical Approach**
 - On-board data processor using COTS parts
 - Networks of Xilinx Field Programmable Gate Arrays (FPGA)
 - FPGA’s allow post-launch reconfiguration to meet new and changing program requirements
 - New digital signal processing applications developed on the ground are uploaded to the payload for execution
 - Tailor processing application to each theater of interest
 - Algorithms swap time <1 min

- **Payload Description**
 - 4-Channel Software Radio
 - Tunable 100-500 MHz with 20 MHz bandwidth
 - Dual 12-bit ADC @ 100 Mspi
Adaptive technology on CubeSats

- Prior experience
 - Reconfigurable FPGAs: 100 – 1000x the performance of a microprocessor
 - LANL has CFE & other mission experience
 - LANL is a leader in SRAM FPGA SEU testing and mitigation
 - Miniaturization
 - Integration into a SOC & single or few PCBs

- Reconfigurable functionality for each satellite
 - *HW reuse* enhances reliability and decreases cost, increases the code base and accelerated development time.

- Using CubeSats
 - High performance, low power computing in a small form factor
 - Data-intensive signal processing is an ideal application
 - Upgrade or add functionality after launch
 - Simplifies the hardware design for CubeSat constellations
Miniaturization

<table>
<thead>
<tr>
<th></th>
<th>Cibola Flight Experiment</th>
<th>CubeSat Reconfigurable Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>16” x 8” x 12”</td>
<td>4” x 4” x 1”</td>
</tr>
<tr>
<td>Weight</td>
<td>20 kg</td>
<td>100 g</td>
</tr>
<tr>
<td>Power</td>
<td>100 W</td>
<td>10 W</td>
</tr>
<tr>
<td>Logic Density</td>
<td>219K registers</td>
<td>185K registers*</td>
</tr>
<tr>
<td>Speed</td>
<td>50 MHz</td>
<td>100MHz</td>
</tr>
<tr>
<td>On-chip memory</td>
<td>1Mb</td>
<td>5Mb</td>
</tr>
<tr>
<td>System memory</td>
<td>.86 GB</td>
<td>.5 GB</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>100 Msp</td>
<td>250 Msp</td>
</tr>
<tr>
<td># bits</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td># Channels</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

*+180 DSP slices (18*18 MAC)
CRC board design

- **Miniaturization of CFE Satellite Payload**
 - More capable than all CFE instrument FPGAs
 - More capable than the CFE follow-on instrument
 - Reduced lifecycle allows more relevant technology to orbit

- **Xilinx Spartan-6**
 - More power efficient than Xilinx Virtex-6
 - Very little performance loss for smaller chips
Partial Reconfiguration: “Software Defined Satellite” => Extreme Integration

I/O to Sensors, Actuators & Satellite Bus

FPGA
- Controller
- Attitude Control System
- Navigation
- SEU Manager
- System Monitor

Fixed Region
- Comms

Reprogrammable Region
- Encrypt
- Sleep

NV Memory
- Comms
- Encrypt
- MPEG
- DEMOD
- Pulse Detect
- XYZ
- Sleep

Necessary functions swapped in as needed

Upload new or refined functions after launch
Science Mission

- Measure Total Electron Content (TEC) in Ionosphere
 - Wide band RF pulse detection
 - TEC tomography using lightning strikes and generated signals
 - Test signals generated from the laboratory and transmitted to orbiting satellites
 - Joint space and ground observations are combined for generating measurements
Built-in Self-Test (BIST) development setup

Testing

- BIST can be ran without a PC, directly from the onboard computer for on orbit testing
- BIST checks CRC board for:
 - Opens
 - Shorts
 - Signal integrity
 - Memory interfaces
 - ADC interfaces
 - ADC performance
Current Status

Hardware

- Received CRC board from manufacturing 7/26/2010
- Powered on and basic functionality verified
- Further testing to be completed before full functionality is verified

Software

- GUI for BIST to verify CRC boards nearing completion
- First FPGA configuration designed to read and report ADC readings nearing completion
Challenge 1: Configuration SEUs / Device Day/ Cell

SEU as observed by CFE
Challenge 2: Power Consumption (Thermal) = f(algorithm)

- Each RCC board power usage ≈ 5 - 28W
- Each FPGA has >500 pins which are susceptible to thermal stresses
 - Maximize lifetime
 - Heat pipes limit max temperatures
 - Column Grid Array package more reliable
 - Matched CTE of thermount PCB to Ceramic Pkg
 - AlBeMet core has superior thermal transfer

without heat pipes: \(\Delta t = 50 \) deg C

with heat pipes: \(\Delta t = 17 \) deg C
Future Work

Constellations

- Numerous inexpensive satellites replace larger expensive satellites
- Paradigm shift allows new functions to be performed
 - Spatial separation
 - Unit replacement
- True global and persistent observation
Conclusion

- **Reconfigurable Processing**
 - Unparalleled performance
 - Extreme integration
 - Very flexible for various satellite missions and configurations
 - Upgradeable after launch
 - Serve multiple users with a single platform

- **CubeSats may allow synchronization between technology nodes and launch schedules**
 - More appropriate technology insertion schedules

- **Challenges:**
 - Need a more systematic thermal management design for high power density applications with wild swings in power consumption
 - Keep radiation tolerance and SEU management in mind
 - Small is not necessarily simple; complexity is still an issue